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A STUDY ON THE NUMERICAL SOLUTION OF THE THIRD-ORDER DISPERSIVE
EQUATIONS WITH HOMOTOPY PERTURBATION METHOD

ABSTRACT
In this paper, a new approach for solving [12] third-order
dispersive partial differential equation in one-and higher-dimensional
spaces 1is proposed. This method is an effective procedure to obtain
for approximate solutions in applied mathematics. The study outlines
the significant features of the method .The analysis have illustrated
by investigating third-order dispersive equation model problem. This
paper is particularly concerned about a numerical computation with the
Homotopy perturbation method. The numerical results demonstrate that
the new method are quite accurate and readily implemented.
Keywords: Third-Order Dispersive Equations, Homotopy
Perturbation Method, Partial Differential Equations,
One-And Higher-Dimensional Spaces, Higher-Dimensional
Spaces

UC BOYUTLU DISPERSIVE DENKLEMININ HOMOTOPiI PERTURBASYON METODU ILE
NUMERIK COzZUMLERI UZERINE BIR CALISMA
OZET
Bu calismada, bir boyutlu ve yiliksek boyutlu uzaylarda ¢ boyutlu
dispersive diferensiyel denklemin ¢ozimid ic¢in yeni bir vyaklasim [12]
O6nerilmektedir. Uygulamali matematikteki bu metod yaklasik c¢ozim elde
etmek icin etkili bir yontemdir. Calisma bu metodun O6nemli
6zelliklerini ana hatlari 1ile gOstermektedir. Analizler, {cboyutlu
dispersive denkleminin model problemi incelenerek &rneklendirilmistir.
Bu makale ©&6zellikle Homotopi Pertirbasyon metodunun nimerik Dbir
sayisal hesaplamasi ile ilgilidir. Numerik sonug¢lar yeni metodun
oldukga dogru ve hizli uygulanabilir oldudunu gdstermektedir.
Anahtar Kelimeler: Ucboyutlu Dispersive Denklemi, Homotopi
Pertirbasyon Denklemi, Kismi Diferensiyel
Denklemler, Bir Boyutlu Uzay, Yiksek Boyutlu
Uzaylar
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1. INTRODUCTION (GIRIiS)

In this paper, we use the homotopy perturbation method (HPM) [1,
2, 3, and 4] in order to find the analytic solutions of third-order
dispersive equation [5 and 6]. The method in applied mathematics can
be an effective procedure to obtain the analytic and approximate
solutions. It 1is too dimportant to find analytic solutions of third-
order dispersive equations. This equation is a mathematical model of
complex physical occurrences that arise 1in engineering, chemistry,
biology, mechanics and physics. A novel approach to linear or
nonlinear problems [7 and 8] is particularly valuable as a tool for
Scientists and applied Mathematicians.

The technique has many advantages over the classical techniques
[9 and 10]. Because the method does not need linearization or weak
nonlinearity assumptions. It 1is providing an efficient explicit
solution with high accuracy and minimal calculation. It does also not
require discretization and consequently massive computation. In this

method, the perturbation equation <can be easily constructed by
homotopy in topology and the initial approximation can also be freely
selected. HPM [16 and 17] is the most effective and convenient on

effor both linear and nonlinear equations. This method does not depend
on a small parameter. Using homotopy technique in topology, a homotopy
is constructed with an embedding parameter pe€[0,1], which 1is
considered as a “small parameter”

HPM has been shown to effectively, easily and accurately solve a
large class of linear and nonlinear problems [13] with components
converging rapidly to accurate solution. HPM was first proposed by He
[1, 2 and 3] and was succesfully applied to various engineering
problems [2 and 3].

2. RESEARCH SIGNIFICANCE (CALISMANIN ONEMI)

In this study, we implemented homotopy perturbation method with
symbolic computation to construct new complex solutions for third-
order dispersive equations.

3. METHOD AND ITS APPLICATIONS (YONTEM VE UYGULAMALARI)
Before starting to give HPM, we will give a simple description
of HPM at the one-and higher-dimensional spaces.

3.1. The One-Dimensional Dispersive Equation
(Bir Boyutlu Dispersive Denklemi)
The linear, third-order dispersive partial differential equation
in one space, in its simplest form, is given by

ou 0’u
+

ot 0x’

t)

0)=

=g(x,t), L,<x<L, t>0,a>0, (1)

where g (X is a source term and initial conditions[13]

u(x f(x). (2)
The first of all we must obtain form HMP. To illustrate the basic
ideas of this method, we consider the following equation [1]:

A(u)—f(r)=0, reqQ, (3)
with boundary condition
ou
Blu,—|=0, rel, (4)
on
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where A is a general differential operator, B is a boundary operator,
f(r) is a known analytical function and T 1is the boundary of the
domain Q. A can be divided into two parts which are L and N, where L
is linear and N is nonlinear. Eqg. (3) can therefore be rewritten as
follows:

L(u)+N(u)—f(r)=O,reQ, (5)
Homotopy perturbation structure is shown as follows:

H(v, p) = (1 - p) I:L (v) - L(uo)] + p[A (v) - f(r):l =0, (6)

v(r,p):QX[O,l]—>R. (7)

where

In eq. (6), p € [O,l] is an embedding parameter and U, is the

first approximation that satisfies the boundary condition. We can
assume that the solution of eqg. (6) can be written as a power series
in p, as following:

2 3
V=V, tpv, tp v, tpv,tee, (8)
and the best approximation for solution is
u=limv=v +v, +v,+v,+--, (9)
p—1

The above convergence 1is discussed in [1]. At the time, we can simply
solve this third-order dispersive partial differential equation in one
space with HPM [14].

In order to solve eq.(l), using HPM, we can construct a homotopy
for this equation

(1-p)lY-u,)+p[Y+a¥ '-g(x,t)]1=0, (10)

Y—do—pY+pﬁo+pY+pocY"'—pg(x,t)=0, (11)

- OY o 0 S S
where Y=—, Y = and p € [O,l]. With initial approximation

ot 0%’
Y, zuo(x,O)Zf(x),
suppose the solution of eg. (10) has the form:

Y=Y, +DY, +p Y, +DY, +0- = D p"Y, (x,t), (12)
n=0

Y=Y, +pY, +p2§{2 +p3Y3+~--,

Y=%+p%+p%gﬂf%+“n

Y=y Y T e,
(Yﬁpfﬁpz Y, +p’ ng-ﬁﬁpﬁﬁpa(%" +pY, +pY, P, ) -pg (x,t)=0,

° N 2 ° 3 ° ° ° L] 2 L] 3 T

Y+pY,+p Y, +p Y,-u,tpu,+tpa¥, +pa¥ +pa¥Y, -pg(x,t)=0,

Then, substituting eqg. (12) into eq. (11), and rearranging based
on powers of p-terms, we obtain:

pO:Yo—LiO:O, (13)

P Y tu oY, —g(x,t)=0, (14)
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P’ :Y2+aYi" =0, (15)
p’ :Y-3+0(Y2'" =0, (16)

with sélving egs. (13);
p’:iYo-u, =0=>Yo=u, =Y, =u,=f (x)=Y,=f (x), (17)

p :Yl+ﬁO+Yc;"—g(x,t)=O:>Y1 =—Lio—0(Y(;"+g(x,t) ’

e (18)
:>Y1:J-I:—uo—o<Y0 +g(x,t)}dt,

0
t

P +ay, =0=Y, =-av, =Y, = [[-av " ]dt, (19)
0
. . t

P ey, =0=Y, =-ay, =¥, = [[-av, |4, (20)
0

the above terms of the series (11) could be calculated. When we
consider the series (11) with the terms (17)-(20) and suppose[):1, we
obtain approximation solution of eqg. (10) as following:

u(x,£) =Y, +¥, +Y, +Y, +--, (21)
t . t t

u(x,t)= f (X)+J.[—u0—O(Y(;” +g (x,t)} dt+J.[—O(Y1”'}dt+J.[—O(Y2"'}dt
0 0 0

As a result, the components Y,Y,Y, Y, are identified and the

series solution thus entirely determined [11, 12, 14 and 15].

3.2. The Higher-Dimensional Dispersive Equation
(Yiksek Boyutlu Dispersive Denklemi)
The linear, third-order dispersive partial differential equation
in higher-dimensional space, in its simplest form, is given by
u, tau, +buyyy+cuzzz=g(x,y,z,t) , L, <x,y,z<L, t>0, a,b,c>0, (22)
where g(X,y,z,L) is a source term and initial conditions

u(x,y,z,0)=£(x,y,2), (23)
In order to solve eq. (22), using HPM, we can construct a homotopy for
this equation.

[

(1-p)lY-uJ+plY+ay +b¥Y+cY-g (x,y,7,t) 1=0, (24)
Y—u-o—pY+pu.0+p§{+ocme +pbY+cp Y-pg (x,v,2,£)=0, (25)
b 0 -0 I 0
where Y = Z, Y==—X7 Y = z, Y==—;% and p € [O,l]. With
ox ot oy 0z

initial approximation L%(X,y,z,0)=:f(x,y,z,)suppose the solution of
eqg. (22) has the form:
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Y=YO+pY1+p2Y2+p3Y3+...=zp“Yn(x,t), (26)
n=0
Y=Y, +pY, +pY, +pY, +:-,

Y=Y +pY,+p Y, +p Y 4+, (27)
Y =Y Y+ P DY+,
Y =YO+pY1-|—p2 Y2+p3 Yoty
2 3
Y=Y +pY,+p Y,+tp Y, +--,

Then, substituting eqg. (27) into eqg. (25), and rearranging based
on powers of p-terms, we obtain:

[

Y—ﬁo—pY+pﬁo+pY+apY"'+pbY+cp.§.{‘—pg(x,y,z,t)=O,
(YO+pY1+p2Y2+p3Y3j—ﬁ0—p(fo+pfl+p2Y2+p3f3j+pﬁo

; ; 2 < 3w e " 20" 3"
+p(Yo+le+p Y,tp Y3j+ocp(Yo +tpY, tpY, tpY; )
+pb[Yo+pY1+p2Yz+p3Y3j+cp(fo~+pi+p2f;+p3fgj—pg(x,y,z,t)=0,
Y 4pY,+p’ Y, +p’ Y-u,-pY,-p’ Y- L,+pu+pY,+pY,
+p Y, +ap¥, +ap’¥ +ap’Y. +pbY¥,+p’bY, +bp’ Y,+cp¥,+cp’ Y,

Jrcp3 Y,-pg(x,y,z,t)=0,

0’ :Yo-u, =0, (28)
pl:Yl+1io+aY(;"+b§0'+c.YO'—g(X,y,z,t)=O, (29)
p2:Y2+aYl'"+b'Y'1'+c§1':O, (30)
p3:Y3+aY2'"+b'Y'2'+c§2':O, (31)

with solving egs. (28);

o’ :Yo—ﬁo =0= Yo =Li0 =Y, =u,(x,y,z,0)=£(x,vy,2,) (32)

=Y, =f(x,v,2,),

p' :Y'1+u'o+aY(;"+bYo+cYO‘—g (x,¥,2,£)=0
t v
=34 :—J[uOJraY(;” +bY,+cY,-g (x,y,z,t)} dt

0

(33)
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R

p’:Y,+aY +bY +cY =0

£ (34)
=Y, =—I[aY1 +bY1+cY1}dt
0

R

p’:Y.+aY, +bY,+cY, =0,

t (35)
=Y, :—j{aﬁg +bY2+cY2}dt,

0

the above terms of the series (25) could be calculated. When we
consider the series (25) with the terms (27) and suppose p = 1, we
obtain approximation solution of eq. (22) as following:

u(x,y,z,t):Y0+Yl+Y2+Y3+---,

t v ..
= f (x,y,z,t)—J‘[uOJraY(;”+bY0+cYO—g (x,y,z,t)} dt
0

(36)
t €
—j[ayl'"+byl+cyl}dt— [aYz +bY2+cY2}dt,
0 0
As a result, the components Y,Y,Y,Y;, -+ are identified and the
series solution thus entirely determined.
EXAMPLE 1. (ORNEK 1)
We first discuss the simplest linear dispersive KdV equation
u t+2u,+u, =0, £t>0, (37)
with initial condition
u(x,0)=sin(x), (38)

In order to solve eq. (37), using HPM, we can construct a homotopy for
this equation.

(1—p)[Y—do]+p[Y+2Y’+Y"']=O, (39)
Y-u,~pY+pu,+pY+2pY +pY =0, (40)
Y—do+pd0+2pY'+pY"'=O, (41)
where Y"'=63z, Y=a—y, Y'=6—y, and p € [0,1]. with initial
ox ot ox

approximation u,(x,0)=sin (x) suppose the solution of eq. (37) has the
form:

Y=YO+pY1+p2Y2+p3Y3+...=zp“Yn(x,t), (42)
n=0
Y=Y, +pY, +p2Y2+p3Y3+-~,

Y=Y ApY+p L, +p VA, )
Y =Y(; +le' +p2Y2' +p3Y3' +--,
Y =Y "+pY, +pY, +p’Y, +---,
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Then, substituting eqg. (43) into eq. (41), and rearranging based
on powers of p-terms, we obtain:

Y—do+pﬁ0+2pY' +pY =0,
(Yo+le+p2 Y2+p3 Y3j—ﬁo+p1i0
+2p(YO' +pY, +Dp°Y, +p3Y3')+p(Y(;" +pY, +p’Y,)" +p3Y3"')= 0,

Y, +pY,+p° Y, +p’ Y,-u,+pu,+2pY, +2p°Y, +2p°Y, +pY,
+p2Y1m+p3Y2m =0,

p :Yo—ﬁO:O, (44)
pliY tu,+2Y +Y =0, (45)
p’:Y,+2Y +Y =0, (46)
P’ Y 42Y.+Y.) =0, (47)

with solviﬁg eqgs. (44);
P’ :Yo-u, =0=>Yo=u, =Y, =u,(x,0)=sin (x)= Y, =sin (x), (48)
Pl Y, tu,+2Y +Y,  =0=Y, =-u,-2Y,-Y," =0,

=Y, =-2cos (x)+cos (x)=-cos (x), (49)

1

=Y =“—cos (x)]dt=—tcos (x),
0

pliY,42Y +Y ' =0=>Y, =-2Y -¥ ",

:>Y2:—2tsin(x)+tsin(x):—tsin(x), (50)
t 2

=Y, =J[—tsin(x)] dt= > sin (x),

R 1 v

P’V A2Y, +Y, =0 Y, =-2Y, - ¥

3 2 2 7

the above terms of the series (42) could be calculated. When we
consider the series (42) with the terms (43) and suppose P = 1, we
obtain approximation solution of Eqg. (37) as following:
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= Y, + pY, + pY, + pY, + -,

c
—_
X
o+
~
|

lim (YO + pY, + pY, + pY, + ),

p—>1

-
—_
X
o+
Il

=Y +Y +Y +Y,

2 3
= sin((x) — t cos (x) — ; sin(x) + ; cos (x), (52)

Exact solution of equation is u(X,t)==Sin(><—t).

EXAMPLE 2. (ORNEK 2)
We closest consider the linear dispersive KdV equation in a two

dimensional space

u, +u,, tu, =0, t>0, (53)
with initial condition

u(x,y,0)=cos (x+y), (54)

In order to solve eq. (53), using HPM, we can construct a
homotopy for this equation.

(1-p)[Y-u+plY+Y "+ Y]=0, (55)
Y.'—u.o—f)Y+pu.0+p.Y+pY”'+pY=O, (56)
Y—ﬁ0+pﬁo+py”'+pY:O, (57)

’ = ’ = ’
ox’ ot oy’
approximation u(x,y,0)=cos(x+ty), suppose the solution of eqg. (53)
has the form:

o _Oy o _8y U _ 0y |
where Y = Y=—, Y and p € [O,l]. With initial

Y=Y +pY, +p°Y, +p’Y, +- = p"Y (x,t) (58)
n=0

Y=Y, +pY, +pY, +DPY, +-,

Y=Y ApY+p Y, +p VA, (52

Y=Yot+tpYi+p Yotp Yst--r,
e e Vi PEREE ERREE
Y =Y, +pY, +tpY¥Y, +tpY, +-,
Then, substituting eqg. (59) into eqg. (57), and rearranging based
on powers of p-terms, we obtain:

Y—ﬁ0+pﬁo+pY"'+pY=O,
[y0+pyl+pzy2+p3g)_uﬁpao

v v 2,0 ERRER o o 2 sy |
+p(§(0 +pY, +p%Y, +pY, )+P(Yo+pY1+p Yotp ng—o,

YO+pY1+p2 Y2+p3 Y3—1io+pﬁo+pY$"+p2Yl'"+p3Y2m+pYO+p2 Yl-l-p3 Y>=0,
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P :Yo—ﬁo=0, (60)
p1;Y1+ﬁ0+'§'{'o+Y(;"=o, (61)
pZ:Y2+‘§|1+Y1'":0, (62)
P Y4 YY) =0, (63)

with sol%ing egs. (60);
poz?o—ﬁo==O:>Yo:1%,
=Y, =u,(x,0)=cos(x+y), (64)
=Y, =cos(x+y),

T

ﬁ;%+%+Yﬁ$T=OF3%=—%—YF%':O,
:le—Zsin(x+y), (65)
t
=Y =I[—2sin (x+y)]dt =(-2t) sin(x+y),
0

Pl ipt YA Y +Y =0y, = - Y-y

:>?2=—4tcos(x+y), (66)

t _ 2
=Y, :J.[—éltcos (x+y)] dt=%cos (x+v),
. !

[ ]
[N

p3 :Y3+ Y2+Y2'” =O:>Y3 ==-Y,-Y,
. +?
:>Y3=?Sin(x+y), (67)

RIS 8t® |
=Y, = || sin(xty)|dt=—F-sin (x+y),

the above terms of the series (60-63) could be calculated. When we
consider the series (64-67) with the terms (57) and suppose p = 1, we
obtain approximation solution of Eqg. (53) as following:
2 3
u(x,t) =Y, +pY, +tp L, +p Y+,
u(x,t)=Llim(Y, +pY, +p’Y, +p’Y, ++),
p—1
=Y, tY¥ +¥, +Y,, (68)

| (2t) 8t
=cos (x+y)+(-2t) sin (x+y)—Tcos (x+y)+?51n (x+vy),
Exact solution of equation is u(x,y,t)==sin(><+}w+2t).

The approximation can be also obtained by y-direction or Dby
alternating use of x-and y-directions iterations formula.
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kesin ¢ozim)
(yaklasik ¢ozum)

(a) :Exact solution(
(b) : Approximation solution
Figure 1. The plots 3D of the numerical results for Y,in comparison

with the analytic solution u (X, y) when t =0.05 with initial condition
of eqg.(37) by means of HPM

(Sekil 1. HPM vasitasiyla baslangic sarti ile denklem
alindigi zaman U (X, y) analitik ¢dztimi ile Y,un sayisal sonuclarinin

i¢ boyutlu grafigi)

(37)nin t =0.05

-1 0 1 2

kesin ¢ozim)

(a) :Exact solution/(
(yvaklasik ¢ozim)

(b) : Approximation solution
Figure 2. The plots of the numerical results for Y,in comparison with
the analytic solution u (%, y) when t =0.05 with initial condition of
eqg. (37) by means of HPM
(Sekil 2. HPM vasitasiyla baslangic sarti ile denklem
alindigi zaman U (X, y) analitik ¢éztimi ile Y,in sayisal sonuclarinin
grafigi)

(37)nin t =0.05
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Table 1. The numerical results for Y, in comparison with the analytic

solution U (%X, y) when t =0.05 with initial condition of eq. (37) by

means of HPM
(Tablo 1. HPM vasitasiyla baslangic sarti ile denklem (37)nin t =0.05

alindigi zaman U (X, y) analitik ¢ozimii ile Y, #in sayisal sonuc¢larinin

karsilastirilmasi)

t\x -10 -5
0.1 -3 -4
. -0,277355 x10 0.985246x10
0.2 -2 -3
. -0,219907 x10 0.81952x10
0.3 -2 -2
. -0,735163 x10 0.28699x10
-1 -2
0.4 0.172517x10 0.704476x10
0.5 -1 -1
. 0.333391x10 0.14223x%10

(a) : Exact solution (kesin ¢ozim)
(b) : Approximation solution (yaklasik c¢oziim)

Figure 3. The plots 3D of the numerical results for Y ,in comparison
with the analytic solution u(x, y) when t =0.05 with initial condition

of eq. (53) by means of HPM
Sekil 3. HPM vasitasiyla baslangic sarti ile denklem (53)nin t =0.05

alindigi zaman U (X, y) analitik ¢ézimil ile Y,in sayisal sonuclarini g

boyutlu grafigi

1F ‘ ‘ ///"“\\\\ ' ' 1F
0.5} // \\ 0.5}
or 0
-0.5 1 \ -0.5 .
N 1 N

(a) : Exact solution (kesin ¢ozim) (b): Approximation solution (yaklasik ¢ozim)
Figure 4. The plots of the numerical results for Y,in comparison with
the analytic solution u (X, y) when t =0.05 with initial condition of

eq. (53) by means of HPM
(Sekil 4. HPM vasitasiyla baslangic sarti ile denklem (53)nin t =0.05

alindigi zaman U (X, y) analitik ¢éztimi ile Y,in sayisal sonuclarinin

grafigi)
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Table 2. The numerical results for Y,in comparison with the analytic

solution U (%X, y) when t =0.05 with initial condition of eq. (53) by

means of HPM
(Tablo 2. HPM vasitasiyla baslangic sarti ile denklem (53)nin t =0.05

alindigi zaman U (X, y) analitik ¢ozimii ile Y, #in sayisal sonuc¢larinin

karsilastirilmasi)

t\x 25 30

0.1 -4 -4
. 0.663748x10 0,132287 x10

0.2 -2 -3
. 0.106318x10 0,252824 x10

0.3 -2 -2
. 0.537399x10 0,148366x10

0.4 -1 -2
. 0.169132x10 0,531466x10

0.5 -1 -1
. 0.410106x10 0,144496x10

4. CONCLUSION (SONUC)

In this work, the HPM [17] was used for third-order dispersive
partial differential equation in one space and in two space with
initial conditions and obtained their analytic solutions. The analytic
solutions of the nonlinear equations have a fundamental importance.

Various effective methods [7 and 8] have been developed to
understand the mechanisms of these physical models, to help physicists
and engineers and to ensure knowledge for physical problems and its
applications. A clear conclusion can be draw from the numerical
results that the HPM algorithm provides analytic solutions without
spatial discretizations for the nonlinear ©partial differential
equations.
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