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DYNAMIC RESPONSES OF FOUNDATION BEAMS SUBJECTED TO TRANSVERSE LOADING ON 

ELASTIC SOIL BY DIRAC DISTRIBUTION THEORY 
     ABSTRACT  
     In this study, the dynamic analysis of a free beam subjected to 
transverse forces and moments on an elastic soil are investigated. The 
foundation model is based on the Winkler hypothesis. Using Dirac 
distribution theory, concentrated disturbances on beams are transformed 
to distributed loads in order to be able to use the governing 
differential equation established for distributed loads. An illustrative 
example is presented in order to demonstrate the use of the study and 
some of the obtained results are given in tables and figures. 
     Keywords: Free Beam, Foundation On Elastic Soil,  
                Concentrated Loads, Dirac Distribution Theory,  
                Dynamic Response 
 

TEKİL KUVVET VE MOMENT ETKİSİNDEKİ ELASTİK ZEMİNE OTURAN TEMEL 
KİRİŞLERİNİN DIRAC DAĞILIM TEORİSİ KULLANILARAK DİNAMİK ANALİZİ 

 
     ÖZET   
     Bu çalışmada, tekil kuvvet ve momentlere maruz elastik zemine 
oturan serbest bir kirişin dinamik analizi incelenmiştir. Temel modeli 
Winkler hipotezine dayalıdır. Yayılı yükler için belirlenen diferansiyel 
denklemin kullanılabilmesi amacıyla, kirişteki tekil zorlamalar Dirac 
dağılım teorisi kullanarak yayılı yüklere dönüştürülmüştür. Çalışmayı 
açıklamak amacıyla tanımlayıcı bir örnek sunulmuş ve elde edilen bazı 
sonuçlar tablo ve şekillerde verilmiştir.  
     Anahtar Kelimeler: Serbest Kiriş, Elastik Zemine Oturan Temel, 
                         Tekil Yükler, Dirac Dağılım Teorisi,  
                         Dinamik Tepki 
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1. INTRODUCTION (GİRİŞ) 
There are various methods used in the analysis of continuous 

foundations as a beam resting on elastic soils. The most important two of 
them are the subgrade modulus method pertaining to the theory of the 
first order and the method of modulus of elasticity based on a second 
order theory. The former presents a model in which the soil is assumed as 
dense liquid while the latter offers an elastic solid model.  
      In the subgrade modulus method, proposed by Winkler [1], it is 
assumed that the deflection at any point of the beam on elastic soil is 
proportional to the pressure applied at that point and is independent of 
pressure acting at nearby points of the beam. In other words, in this 
method the beam is considered as if it is resting on infinitely long 
independent elastic springs with subgrade modulus [2]. In the elastic 
solid model, the effects of the neighboring points to the point in 
question are taken into account by Boussinesque’s load-deformation 
relation in an isotropic elastic semi-space. In this case, the soil is 
characterized by its elastic properties, namely, elastic modulus and 
Poisson’s ratio. However, the solution of the differential equation 
established for this model may present certain computational difficulties 
and approximate methods may be needed to involve for the solution. 
     However, both models do not represent the real soil exactly. It 
behaves neither as a dense liquid nor as an elastic solid. With a more 
realistic hypothesis, some researchers developed two-parameter models for 
the elastic soil [3, 4, 5, 6 and 7]. In comparison with the single 
parameter model, i.e. Winkler model, these two-parameter foundation 
models represent the foundation characteristics more accurately. 
Vallabhan and Daloglu had developed relations in which subgrade modulus 
varies with depth which is equivalent to the two-parameter Vlasov-
Leontiev solution and can be used in classical Winkler model [8]. Misir 
improved the Equivalent Winkler Subgrade Modulus Method as an approach to 
the two-parameter model (Vlasov-Leontiev) to include definition of the 
subgrade modulus considering the influence of both multilayered soil 
profiles and increase in effective stresses [9]. 
     In this paper, the subgrade modulus method is used, which is also 
preferred in practice for static problems due to its simplicity of 
mathematical formulation. One of the most important drawbacks of this 
method is difficulties in determining the modulus of subgrade reaction of 
the soil. The variation of contact pressure over the bearing area 
requires the variation of subgrade modulus as well; subgrade modulus 
depends not only on the physical characteristics of the soil but also on 
the foundation dimensions, the rigidity of the foundation, the 
distribution of loading on the superstructure and the thickness of the 
compressible layer which causes settlement. Therefore accurate 
determination of deflection of the foundation and stresses on the 
superstructure can only be possible by using these factors [10].  
     In addition to all of these, it is known that the subgrade modulus 
values for dynamic loading are different from those for static loading. 
Based on these facts, values for subgrade modulus should be determined by 
field tests conducted for different types of soils, different loading 
conditions and different loading areas. However in practice, except for 
very important structures, subgrade modulus values are taken from tables 
prepared for different soil types. In the subgrade modulus method, the 
rigidity of the superstructure, the stress distribution under the 
foundation base and lateral movement of the base soil are left out from 
the mathematical model. 
  
     
 
 



e-Journal of New World Sciences Academy  
 

Engineering Sciences, 1A0071, 5, (2), 129-142. 
Saatçı, A. and Kahraman, S. 

 

131 
 

      2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ) 
In the presented study, the dynamic responses of a free beam 

subjected to transverse forces and moments on elastic soil are 
investigated. The governing differential equation is established for 
distributed loads, therefore, initially using Dirac distribution theory, 
the concentrated forces and moments on beams have been transformed to 
distributed loads. 

 
      3. MATHEMATICAL FORMULATION (MATEMATİKSEL FORMÜLASYON) 

Fig. 1a shows a foundation beam with flexural rigidity EI(x), 
coefficient of viscous damping c(x) per unit length, base width b(x), 
cross-sectional area A(x), mass density ρ and mass m(x) = ρA(x) per unit 
length on a soil with subgrade modulus K0. The beam is subjected to 
distributed external load f(x,t) which may vary with position x and time 
t. The forces on a differential element of length dx are shown in Fig. 
1b, where V(x,t) is the transverse shear force, M(x,t) is the bending 

moment, y(x,t) is the transverse displacement, tyxc )(  is the viscous 

damping force, 22)( tyxm  is the inertia force and yxbKyxk )()( 0  is the 

elastic response of the soil. 
    In the analysis the effects of shear and axial deformations and 
rotational inertia are ignored. The governing differential equation for 
the transverse vibration of a beam on elastic soil shown in Fig. 1 can be 
written as  
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     The solution of this partial differential equation under the 
boundary and initial conditions yields the response ),( txy  of the beam in 
position x and at time t. Once the deflection is determined, the slope, 
bending moment and the shear can be calculated by taking the first, 
second and third derivative of the solution (response) function with 
respect to x, respectively.  

 
 

 
 
Figure 1. Foundation beam (a) subjected to distributed external dynamic 

loads, (b) the forces on a differential element 
(Şekil 1. (a) Yayılı dış dinamik yükler etkisindeki temel kirişi, 

(b)diferansiyel eleman üzerinde kesit tesirleri) 
 
 

(b) (a) 
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3.1. Natural Frequencies and Mode Shapes  
    (Doğal Açısal Frekanslar ve Mod Şekilleri) 
For free vibration, 0),( txf , and with the assumption that the 

damping coefficient and the section characteristics are constant along 
the beam, the natural frequencies and modes can be obtained by the 
solution of the following homogeneous partial differential equation with 
constant coefficients  

 0
2

2

4

4















ky

t

y
c

t

y
m

x

y
EI  (2) 

The solution function of Eq. (2) can be written by the method of 
separation of variables as 
  )()(),( tTxXtxy   (3) 

where )(xX  is the characteristic shape function and )(tT  is a time 
function. The substitution of Eq. (3) into Eq. (2) leads to  
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where Roman indices denote derivatives with respect to x and overdots 
indicate derivatives with respect to time. Since the left hand side of 
Eq. (4) is a function only of x while the right hand side is a function 
of t only, Eq. (4) is true only if each side is equal to the same 
constant. Designating this constant by p and setting both sides equal to 
it yields  

 0 pXEIX IV  (5) 
 and 
 0)(  TpkTcTm   (6) 
    The solution of Eq. (5) is 

 xCxCxCxCxX  coshsinhcossin)( 4321   (7) 

 where 
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p
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The four integration constants in Eq. (7) are determined via the boundary 
conditions. 
 In the case of underdamped motion, the solution of Eq. (6) is 
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where 0T  and 0T  are parameters which depend on initial conditions and D  

is the damped natural frequency of the system which is given by 

 21  D  (10) 
where   is the undamped natural frequency, namely 
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which is called as damping ratio. 
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      3.2. Shape Function of the Free Beam  
          (Serbest Kirişin Şekil Fonksiyonu) 

The four integration constants in the general solution of the 
characteristic shape function given in Eq. (7) are determined by the 
boundary conditions of the free beam shown in Fig. 1. The boundary 
conditions for such a beam are as follows: 
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 Eqs. (13) gives a set of equations with constant coefficients. The 
determinant of the coefficients must be equal to zero for nontrivial 
solution. The expansion of this determinant leads to 
 1coscosh  LL   (14) 
which is the frequency equation for the free beam. The numerical solution 
of this transcendental equation gives with a good approximation the 
following relationship 
 ...,3,2,1)2/1(  nnL   (15) 
For the first mode, that is n = 1, Eq. (15) yields a value of 4.71 for 

L  while the exact value is appr. 4.73. For upper modes the difference 
is getting smaller. In the computations, the exact solutions of Eq. (14) 
must be used for the first several modes (say 5 modes), while Eq. (15) 
may be utilized for higher modes. After finding the values of L , the 
natural frequencies can be obtained from Eqs. (8) and (11) as follows: 
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The solution to the set of homogeneous equations (13) is parameter-
dependent. However, normal modes are determined to a relative magnitude, 
therefore the constant arose in the solution may be taken unity. Hence, 
the characteristic shape function for the n-th mode is obtained as 

 )cosh(cossinhsin)( xxxxxX nnnnnn    (17) 

where 
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From Eq. (3) the displacement function for the n-th mode is given by 

 )()(),( tTxXtxy nnn   (19) 

The general solution to the equation of motion, namely the total 
deflection is obtained by superimposing all modes as follows: 

  


1
)()(),(

n
nn tTxXtxy  (20) 

 
3.3. Forced Vibration (Zorlanmış Titreşim) 
This paper deals with the transverse vibration of continuous beams 

on elastic soils subjected to dynamic disturbances due to concentrated 
loads and moments. However, the right hand side of Eq. (1) has been 
established for distributed loads. For this reason, concentrated loads 
will be transformed to distributed loads by the theory of generalized 
functions (distributions). The technique used in this study is to expand 
the Dirac distribution into a series of an orthogonal function family 
[11].  
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3.4. Foundation Beams under Concentrated Forces  
     (Tekil Yük Etkisindeki Temel Kirişleri)  
The concentrated force ),( tsF  on any position s of the beam may be 

transformed to distributed load by Dirac distribution as  

 )()(),( 0 xtFtxf sss          (21) 

where the load function is of the form 

 )(),( 0 tFtsF ss         (22) 

and 

 
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nns xXAsxx )()()(         (23) 

In these equations sF0  is the amplitude of the force located at a point 

s, )(ts  is the time function of the force, )(xs  is Dirac distribution 

function centered at position s. This distribution is expanded into a 
series of shape functions. By taking the inner product of Eq. (23) with 

mX , and utilizing the properties of distributivity, homogeneity and 

orthogonality, we obtain 
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The inner product of shape function of free beam for the same mode is  

 22
, nnnn LXXX         (25) 

and from the definition of Dirac distribution [12] 

 nsnns XsXX  )(,         (26) 

the constant nA  is obtained as 
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Substituting nA  into Eq. (23) yields 
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From Eqs. (21) and (28), the concentrated load ),( tsF  located at position 
s is transformed to distributed load as 
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It follows from this that the general differential equation for 
foundation beam under concentrated loads may be expressed as 
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By rearranging Eqs. (5), (8) and (16), and by the method of separation of 
variables, Eq. (30) reduces to 
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The solution of the differential equation (31) is determined by Duhamel 
integral as follows: 
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where 0nT  and 0nT  are parameters depending only on the initial 

conditions. 
 

3.5. Foundation Beams under Concentrated Moment Loads  
     (Tekil Moment Etkisindeki Temel Kirişleri) 
Since Eq. (1) is arranged for distributed loads, the concentrated 

moment ),( tsM  on any position s of the beam, positive in clockwise 
direction, may be transformed to distributed load by Dirac distribution 
as  
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and hence 
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where the moment function is of the form 

 )()(),( 0 xHtMtsM sss        (35) 

In these equations sM 0  is the amplitude of the moment located at a 

point s, )(ts  is the time function of the force, )(xs  is Dirac 

distribution function centered at position s, and )(xH s  is Heaviside 

function. The first derivative of Dirac distribution may be expanded into 
a series of shape functions as 

 
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By taking the inner product of Eq. (36) with mX  and taking into 

consideration the modal orthogonality together with the solution in Eq. 
(25), we obtain  
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The inner product of k-th derivative of Dirac distribution with any 
function g(x) is given as 
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from last two equations the constant nD  is found as 
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which leads to 
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Consequently, from Eqs. (1), (34) and (40), the general differential 
equation for foundation beam on elastic soil under concentrated moment 
loads is obtained as 
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which, by the method of separation of variables reduces to 
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The solution of the differential equation (42) is determined by Duhamel 
integral as follows: 
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 If more than one load acts on the system the generic equation to be 
solved may be written by superposition as 
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where i is the number of concentrated force and j is the number of 
concentrated moment acting on the beam. 
 

3.6. Initial Conditions (Başlangıç Koşulları) 
The values of displacement and velocity functions for the beam at 

0t  have to be transformed to the time function and the first derivative 
of the time function with respect to x, namely the initial conditions for 
the time function. Let the displacement and velocity functions at initial 
time be )(xu and )(xv , respectively, that is 

 )()0,( xuxy           (45) 

 )()0,( xvxy           (46) 
Hence, from Eq. (20) 
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By taking the inner product of last two equations with mX  in view of the 

modal orthogonality and Eq. (25), we obtain  
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 The inner product of shape function given in Eq. (17) with an 
arbitrary constant yields zero, namely 

 0)(,1
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
L
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Therefore, the parameters 0nT  and 0nT  take the value of zero for constant 

displacement and velocity and shape functions do not represent the 
initial conditions. For this reason, in case of constant )(xu , this value  

has to be superimposed with the values ),( txy calculated from Eq. (20).  
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3.7. Internal Forces (Kesit Tesirleri) 
After determining the displacements caused by external loads acting 

on the foundation beam, the slope ),,( tx  bending moment ),( txM  and shear 

force ),( txV  at any given position x and time t may be evaluated by the 
following well-known relationships and Eq. (20) : 
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 As mentioned before, if the initial displacement function is 
constant, namely 

 .)( constcuxu          (55) 

because of the property given in Eq. (51), it follows that 
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For constant displacement and velocity functions 
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therefore, the values found in Eqs. (52), (53) and (54) would not change. 
 

4. NUMERICAL APPLICATION (SAYISAL UYGULAMA)    
As an application of the method, the foundation beam shown in Fig. 

2 is considered. The beam is prismatic and has the following properties: 
the flexural rigidity EI = 3000 MNm2, mass per unit length m = 2 kNs2/m2, 
base width b = 1.2 m. The subgrade modulus of the soil, K0 on which the 
foundation rests is 50 MN/m3. All the excitation frequencies, Ω are taken 
as 100 rad/s. The problem is solved without damping, i.e., the damping 
ratio ζ = 0. The solution of the problem under this data set is referred 
to as base. 

 
 

Figure 2. The foundation beam on elastic soil subjected to dynamic 
loading 

(Şekil 2. Dinamik yüklemeye maruz elastik zemine oturan temal kirişi) 
 
In order to compare the behavior of the foundation for different cases, 
the problem is solved for various data sets. In each set, one parameter 
is changed only. These parameters are the flexural rigidity, the subgrade 

modulus, the excitation frequencies and the damping ratio. Three 
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different values of each parameter used are shown in Table 1.Hata! 
Başvuru kaynağı bulunamadı.. Values of the parameters used in the 

different solutions 
(Tablo 1. Farklı çözümlerde kullanılan parametrelerin değerleri) 

Parameter I II III 
EI (MNm2) 1000 10000 50000 
K0 (MN/m3) 10 100 500 
Ω (rad/s) 150 200 250 
ζ (-) 5 % 10 % 20 % 

 
 The damping ratios in Table 1 may be defined from Eq. (12) as 

 
12 


m

c
  

where 1  is the first natural frequency of the beam and is equal to 
222.587 rad/s in the studied case. 

The problem is solved by taking into account 200 modes for the 
interval of time corresponding to a duration of four periods which is 
approximately 0.1 s. The first natural period and the first five natural 
frequencies obtained for different values of parameters are set out in 
Table 2. 

Table 3 gives the extremum values of displacements and bending 
moments of the foundation beam for different values of parameters. In 
this table, the positions and the time of occurrences of these extrama 
are shown too. Also relative changes (RC) which give comparisons between 
the results obtained from the base solution and the results obtained by 
changing the parameters are presented in the table. 

 
Table 1. The first natural period (s) and the first five natural 

frequencies (rad/s) for different values of parameters 
(Tablo 2. Farklı parametre değerleri için birinci doğal periyot(sn) ve 

ilk beş açısal frekans (rad/sn)) 
 

 
 
 
 
 
 
 
 
 
 
 
Table 2. The extremum values of displacements and bending moments of the 

foundation beam for different values of parameters 

 T1 1 2 3 4 5 

Base 0.02823 222.587 422.509 775.089 1260.815 1873.607 
EI1 
EI2 
EI3 

0.03288 
0.02037 
0.01053 

191.089 
308.465 
596.450 

281.966 
724.600 
1582.792 

469.313 
1390.160 
3089.130 

741.542 
2286.668 
5101.397 

1090.933 
3410.475 
7618.182 

K0,1 
K0,2 
K0,3 

0.03931 
0.02228 
0.01112 

159.828 
282.037 
565.283 

393.082 
456.633 
669.712 

759.449 
794.206 
933.147 

1251.261 
1272.657 
1363.692 

1867.191 
1881.596 
1944.326 

D1 
D2 
D3 

0.02826 
0.02837 
0.02881 

222.309 
221.472 
218.090 

422.362 
421.922 
420.157 

775.009 
774.770 
773.810 

1260.766 
1260.619 
1260.029 

1873.574 
1873.474 
1873.078 
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(Tablo 3. Farklı parametre değerleri için temel kirişinin deplasman ve 
eğilme momentleri ekstremum değerleri) 

 
* maximum displacements occur at x = 14 m in each case; minimum 
displacements occur at x = 0 m 
in each case 
     The deflection and bending moment responses of the foundation beam 
at x = L/2 obtained for different parameter values mentioned before are 
presented in Figs. 3 and 4, respectively. 
      Fig. 5 shows the elastic curves of the beam at the time in which 
the maximum positive deflection occurs for different parameter values. 
The instances given in Fig. 5 can also be seen in Table 3. 

With the variation of parameters such as flexural rigidity, 
subgrade modulus, excitation frequency and damping ratio, it is clear 
from Table 3 and Fig. 5 that not only the magnitudes of the maximum 
deflections and bending moments but also their time of occurrences and 
their positions change. When Table 3 and Figs. 3 through 5 are perused, 
it can be observed that the influences of the variation of subgrade 
modulus and flexural rigidity on the dynamic responses are more 
pronounced compared to the variation of damping ratio and excitation 
frequency. The damping ratios used in this study are practical values. If 
higher damping ratios are considered, their influence on responses would 
be more distinguishable. As the excitation frequencies approach to the 
natural frequency of the system it is obvious that their responses 
increase sharply. 

 

 ymax
*
  ymin

† Mmax Mmin 

Mag. 
(mm) 

RC 
(%) 

Time 
(10-
2s) 

 
Mag 
 (mm) 

RC 
(%) 

Time
(10-
2s) 

Mag. 
(kNm)

RC 
(%) 

Pos 
 (m)

Time
(10-
2s) 

Mag. 
(kNm) 

RC 
(%) 

Pos 
 (m) 

Time
(10-
2s) 

Base 2.57 - 8.32  -1.67 - 4.16 1022 - 6.86 4.47 -1014 - 10.04 2.17

EI1 
EI2 
EI3 

3.77 
1.07 
0.25 

+47 
-58 
-90 

2.96 
2.04 
2.14 

 -3.21 
-1.10 
-0.26 

+92 
-34 
-84 

5.37
4.90
5.73

866 
1433
1654

-15 
+40 
+62 

6.99
6.86
7.10

4.81
4.72
4.74

-805 
-1235 
-1296 

-21 
+24 
+28 

12.01 
10.04 
10.04 

9.77
2.11
2.18

K0,1 
K0,2 
K0,3 

4.72 
1.77 
0.62 

+84 
-31 
-76 

7.71 
2.03 
2.26 

 -6.00 
-1.29 
-0.47 

+259
-23 
-72 

5.27
5.17
6.02

2136
927 
649 

+109
-10 
-36 

7.00
7.04
1.09

5.24
5.16
0.16

-1396 
-905 
-686 

+38 
-10 
-32 

9.79 
11.58 
11.80 

7.23
9.06
9.05

Ω 1 
Ω 2 
Ω 3 

3.72 
7.54 
7.69 

+45 
+193 
+199 

5.31 
7.70 
9.48 

 
-3.55 
-8.45 
-7.41 

+113
+406
+343

3.78
9.20
8.17

1441
2827
2405

+41 
+177
+135

6.97
7.09
7.04

3.55
9.20
8.20

-1191 
-1795 
-2102 

+18 
+77 
+107 

9.98 
4.87 
8.69 

5.20
7.63
9.53

D1 
D2 
D3 

2.24 
2.06 
1.79 

-13 
-20 
-30 

2.29 
2.30 
2.33 

 -1.34 
-1.36 
-1.46 

-20 
-19 
-13 

4.19
5.17
5.47

893 
810 
722 

-13 
-21 
-29 

7.04
7.03
6.97

4.56
4.56
5.23

-906 
-821 
-706 

-11 
-19 
-30 

10.04 
10.20 
11.58 

2.17
2.16
2.32
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Figure 1. Deflection versus time of the beam shown in Fig. 1 at x = L/2 
for different parameters:  (a) flexural rigidity, (b) subgrade modulus,     

(c) excitation frequencies, (d) damping ratio 
(Şekil 3. Şekil 1’deki kirişin (a) eğilme rijitliği, (b) yatak katsayısı, 
(c) zorlanmış titreşim frekansları, (d) sönüm oranı parametrelerine bağlı 

olarak x = L/2 kesitindeki deplasman - zaman ilişkisi) 
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Figure 2. Bending moment versus time of the beam shown in Fig. 1 at x = L/2 
for different parameters: (a) flexural rigidity, (b) subgrade modulus, (c) 

excitation frequencies, (d) damping ratio 
(Şekil 4. Şekil 1’deki kirişin (a) eğilme rijitliği, (b) yatak katsayısı, (c) 
zorlanmış titreşim frekansları, (d) sönüm oranı parametrelerine bağlı olarak 

x = L/2 kesitindeki eğilme momenti - zaman ilişkisi) 

 
Figure 3. Elastic curve of the beam shown in Fig. 1 at the time in which the 
maximum positive deflection occurs for different parameters: (a) flexural 

rigidity, (b) subgrade modulus,(c) excitation frequencies, (d) damping ratio 
(Şekil 5. Şekil 1’deki kirişin (a) eğilme rijitliği, (b) yatak katsayısı, (c) 
zorlanmış titreşim frekansları, (d) sönüm oranı parametrelerine bağlı olarak 

maksimum pozitif deplasmanın oluştuğu andaki elastik eğrisi) 
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5. CONCLUSIONS (SONUÇLAR) 
The dynamic responses of a free beam subjected to transverse forces 

and moments on a Winkler foundation are presented. Since the governing 
differential equation is established for distributed loads, the 
concentrated forces and moments on beams have been transformed to 
distributed loads using Dirac distribution theory. Even though in theory 
this method is elegant, it turns out to be impractical in some cases. 
While the method yields reliable results for all dynamic responses 
(deflection, slope, bending moment and shear force) for concentrated 
forces, in the case of concentrated moment action, some inconsistencies 
may appear in shear forces due to the property of distribution functions. 
For the same reason, it is needed to involve a large number of modes to 
calculate shear forces for concentrated force and bending moments for 
concentrated moment loading. Since the distribution functions are 
expanded into a series of continuous shape functions, the discontinuities 
in the related internal forces at the points of application of the loads 
can be noticed only when higher modes are used. 
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