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FINDING EXACT SOLUTION BY USING A NEW AUXILIARY EQUATION FOR 

FRACTIONAL RLW BURGES EQUATION 
 

ABSTRACT 
In this study a new method with a different auxiliary equation 

from the Riccati equation is used for constructing exact solutions of 
fractional nonlinear partial differential equations. The main idea of 
this method is to take full advantage of a different auxiliary 
equation from the Riccati equation which has more new solutions. 
Finally, more new solutions have been obtained for the fractional RLW 
Burgers equation. 

Keywords: Fractional Nonlinear Partial Differential Equations, 
          Fractional RLW Burgers Equation, Modified Riemann– 
          Liouville Derivative, Nonlinear Partial Differential  
          Equations, Riemann–Liouville Derivative 

 
YENİ BİR YARDIMCI DENKLEM KULLANARAK KESİRLİ RLW BURGES DENKLEMİ İÇİN 

TAM ÇÖZÜM BULMA 
 

ÖZET 
 Bu çalışmada kesirli lineer olmayan kısmi diferensiyel 
denklemlerin tam çözümlerinin oluşturulması için Riccati denkleminden 
farklı bir yardımcı denklem ile yeni bir metod kullanılmıştır. Bu 
metodun ana fikri, Riccati denkleminden farklı olarak yeni çözümlere 
sahip yeni bir yardımcı denklemden en iyi şekilde yararlanmaktır. 
Sonuç olarak, kesirli RLW Burgers denklemi için birçok yeni çözüm elde 
edilmiştir. 

Anahtar Kelimeler: Kesirli Lineer Olmayan Kısmi Diferensiyel 
                   Denklemler, Kesirli RLW Burgers Denklemi, 
                   Modified Riemann–Liouville Türevi,  
                   Lineer Olmayan Kısmi Diferensiyel Denklemler,  
                   Riemann–Liouville Türevi 
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1. INTRODUCTION (GİRİŞ)  
In the recent years, remarkable progress has been made in the 

construction of the approximate solutions for fractional nonlinear 
partial differential equations (fnPDE)[1, 2 and 3]. In particular 
fractional differential equations could be helpful to understand the 
behavior of the physical problems. Therewithal reaching to the exact 
solutions of fractional differential equations is very important. In 
this stage, it is not possible to solve the fnPDE before converting 
these equations into integer-order differential equations, doing this 
conversion we need to have a variable transformation by using a kind 
of fractional derivative and some useful formulas such as a modified 
Riemann–Liouville derivative which are proposed by Jumarie [4, 5 and 
6].  

Many explicit exact methods and analytic methods have been 
introduced in literature [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20 and 21]. In our present work, we implement relatively new 
method and balance term definition [22] with a different auxiliary 
equation from the Riccati equation is used for constructing exact 
solutions of fnPDE.  We also intend to investigate for the first time 
the applicability and effectiveness of the method on fnPDE. We can 
therefore easily convert fnPDE into nPDE or ODE using suitable 
transformation, so that everyone familiar with advanced calculus can 
deal with fractional calculus without any difficulty. 

In this article, the first section presents the scope of the 
study as an introduction. In the second section contains some basic 
definitions of the modified Riemann–Liouville derivative, analyze of a 
new method and balance term definition. In the third section, we will 
obtain exact solutions of fractional RLW Burgers equation by using a 
new auxiliary equation. In the last section, we implement the 
conclusion. 

 
2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ)  
In this article, we have presented a new method and balance term 

definition and used it to solve the fractional RLW Burgers equation. 
In fact, this method is readily applicable to a large variety of 
fnPDEs.  

 
3. PRELIMINARIES AND NOTATIONS (TEMEL KAVRAMLAR VE GÖSTERIMLER) 
In this part of the paper, it would be helpful to give some 

definitions and properties of the fractional calculus theory. For an 
introduction to the classical fractional calculus we refer the reader 
to [1, 2 and 3]. Here, we briefly review the modified Riemann–
Liouville derivative from the recent fractional calculus proposed by 
Jumarie [4, 5 and 6]. Let f: [0, 1]→R be a continuous function and 
α ∈(0, 1). The Jumarie modified fractional derivative of order α and f 
may be defined by expression of [9] as follows: 

௫ܦ
αf (x) =

⎩
⎪
⎨

⎪
⎧

ଵ
௰(ିα)

∫ ݔ) − ξ)ିαିଵ [݂(ξ) − ݂(0)]݀ξ,                     α < 0,௫
଴

ଵ
௰(ଵିα)

ௗ
ௗ௫

∫ ݔ) − ξ)ିα [݂(ξ) − ݂(0)]݀ξ,           0 < α < 1,௫
଴

൫݂(௡)(ݔ)൯
(αି௡)

,                                 ݊ ≤ α ≤ n + 1, n ≥ 1.

�                                    (1) 

In addition to this expression, we may give a summary of the 
fractional modified Riemann–Liouville derivative properties which are 
used further in this paper. Some of the useful formulas are given as 

௫ܦ
α݇ =  (2)                      (ݐ݊ܽݐݏ݊݋ܿ ܽ ݏ݅ ݇)       ,0

௫ܦ
αݔఓ = ൝

ߤ)                                           ,0 ≤ α − 1),
Γ (ఓାଵ)

Γ (ఓିαାଵ) ߤ)                  ,ఓି αݔ > α − 1).
�            (3) 
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Similar to integer-order differentiation, the Jumarie’ modified 
fractional differentiation is a linear operation: 

D୶
α(ߚu(x)+ߛv(x)) = ߚD୶

αu(x) + ߛD୶
αv(x),                (4) 

where ߚ and ߛ are constants, and satisfies the so called Leibniz rule 
for the Jumarie’ modified fractional derivative is equal to the 
standard one: 

D୶
α(u(x)v(x)) = v(x)D୶

α u (x) + u (x)D୶
αv(x)= ∑ ൫௡

௞൯∞
௞ୀ଴ D୶(ݔ)(௞)ݑ

αି୩v(x),(5) 
if v(x) is continuous in [0,x] and u(x) has continuous derivative in 
[0,x]. The last properties is 

D୶
α[f (u(x))] = f௨

′(u)D୶
αu(x) = D௨

αf (u)(ݑ୶
′)α,                     (6) 

which are direct consequences of the equality ݀αݔ(t) = Γ (1 + α)dx(t). 
In last, let us consider the time fractional differential 

equation with independent variables x = (ݔଵ,ݔଶ,...,ݔ௠,t) and adependent 
variable u, 

G(u, D୶
αݓ ,ݑ௫భ, ݑ௫మ, ݑ௫య, D୶

ଶαݑ ,ݑ௫భ௫భ, ݑ௫మ௫మ, ݑ௫య௫య, ...) = 0.      (7) 
Let us give a variable transformation for Eq. (7) as 

u(ݔଵ, ݔଶ,..., ݔ௠,t) = u (ξ ), ξ =ݔଵ+݈ଵݔଶ+ … + ݈௠ିଵݔ௠ + ௖௧α

Γ (αାଵ),    (8) 

where ݈௜ and ߢare constants to be determined later; after the 
transformation the fractional differential equation (7) is reduced to 
an ordinary differential equation 

,( ξ)ݑ)ܪ ,( ξ)′ݑ ,( ξ)′′ݑ … ),                         (9) 
where' = ௗ

ௗ(ξ)
.  

 For more information on the mathematical properties of 
fractional derivatives can consult the mentioned references. 
 

4. ANALYSIS OF THE METHOD (METODUN ANALİZİ) 
Let us simply describe the method. Consider a given time 

fractional partial differential equation in two variables and a 
dependent variable u, 

G(u, D୲
αݑ ,ݑ௫, ݑ௫௫, ݑ௫௫௫, ...) = 0.           (10) 

Let us give a variable transformation for Eq. (7) as  
u(x,t) = u(ξ),   ξ =ݔ + ௖௧α

Γ (αାଵ),                  (11) 

whereߢis constant to be determined later; after the transformation the 
fractional differential equation (10) is reduced to an ordinary 
differential equation 

,( ξ)ݑ)ܪ ,( ξ)′ݑ ,( ξ)′′ݑ … ).                       (12) 
The fact that the solutions of many nonlinear equations can be 

expressed as a finite series of solutions of the auxiliary equation 
motivates us to seek for the solutions of Eq. (10) in the form 

   , ( )
m

i
i

i m
u x t u a F  



  
                       

(13) 

where ξ =ݔ − ௖௧α

Γ (αାଵ), ܿ and   are constants, m is a positive integer that 
can be determined by balancing the linear term of highest order with 
the nonlinear term in Eq. (9),   is balancing coefficient that will 
be defined in a new “Balance term” definition and 0 1 2, ..., ,a a a  are 
parameters to be determined. Substituting (13) into Eq. (12) yields a 
set of algebraic equations for 0 1 2, ..., ,a a a because all coefficients of F 

have to vanish. From these relations 0 1 2, ..., ,a a a  can be determined. The 
main idea of our method is to take full advantage of the new auxiliary 
equation. The desired auxiliary equation presents as following 
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3AF BF CF
F

   
              

(14) 

where
dF F
d

 , A, B and C are constants. 

Case 1. If 
1 1 1, ,
4 2 2

A B C      then (14) has the solution

   
1

1 tan sec
F

 


 
 

Case 2. If
1 1, , 0
4 2

A B C      then (14) has the solutions

   
1

1 csc coth
F

h  


 
or 

   
1

1 sec tanh
F

i h  


 
 

Case 3. If
1 , 1, 0
2

A B C    then (14) has the solutions
 

1
1 cot

F
h 




or 

 
1 .

1 tanh
F





 

In the following we present a new approach to the “Balance term” 
definition; 

Definition: When Eq. (1) is transformed with 

   , ,
(1 )
ctu x t u x



 


  
 

, where c is real constant, we get a 

nonlinear ordinary differential equation for  u  as following 

 , , , , 0.H u cu u u   
                                         

(15) 

Let  pu is the highest order derivative linear term and  rqu u  is the 
highest nonlinear term in (15) and 2

0 1 2 ... n
nF k k F k F k F      is the 

auxiliary equation that is used to solve the fnPDE then the “Balance 

term” m can be decided by the balancing the nonlinear term  rqu u  and 

the linear term  pu  with acceptances of iu F and nF F   where n is 

integer  1n  and  is the balance coefficient that can be determined 
later. 

Example. We consider the fractional KdV equation of the form 
3

36 0, 0, 0 ,u u uu t
t x x



 
  

    
  

                 (16) 

With the initial condition    ,0u x f x . For the fractional KdV 

equation with the transform    , ,
(1 )
ctu x t u x



 


  
 

, we have the 

ordinary differential equation as following 
6 0.cu uu u                                                  (17) 

By the balancing linear term u with nonlinear term uu  
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 
   

   

      
   
   

1 1 1

1 2

2 2 2

2 2 2 3

2 3

3 3

,

1 ,

   1 1 ,

1 1 2 2

   1 2 2

1 2 2 ,

m m m n m n

m n m n

m n n m n

m n m n

m n n

m n

m

u F mF F mF F mF

u mF m m n F F

m m n F F m m n F

u m m n F m m n m n F F

m m n m n F F

m m n m n F

uu F m

   

 

 

 





 

   

   

   

   

 

 

    

    

     

        

    

    

  1 2 2 1 ,m n m nF mF     

(18) 

we have the equations above and the equating uu to ,u we obtain   
  2 2 1 3 31 2 2m n m nmF m m n m n F        

. 
From this point the balance coefficient λ can be calculated as 

  1 2 2m n m n      and  2 1m n  . 

If it is noticed that our new balance term m   2 1m n   is connected 
to n. Namely our new balance term definition is connected to chosen 
auxiliary equation [22]. 
 

5. APPLICATION OF THE METHOD (METODUN UYGULAMASI) 
     5.1. Example 1 (Örnek 1) 

Let’s consider the fractional RLW Burgers equation  
2

212 0, 0, 0 ,u u u uu t
t x x x t



 
                                         (19) 

with the transform (11) we have the following equation. 
' ' 12 ' 0.cu u uu u cu                                          (20) 

From the Definition 2.1 we have the balance term of RLW Burgers by 
using the auxiliary equation (14), is equal to 4 and the balance 
coefficient could find 48. If the values of the m and ߣ is written 
into (13). Therefore, we may choose the following ansatz: 

   4 3 2 1 2 3 4
4 3 2 1 0 1 2 3 4, ( ) 48 .u x t u a F a F a F a F a a F a F a F a F    
            

   
(21) 

Substituting (20) into (17) along with Eq. (14) and using 
Mathematica yields a system of equations [22]. Setting the 

coefficients of iF in the obtained system of equations to zero, we can 
deduce the following set of algebraic polynomials with the respect 

unknowns 0 1 2, ..., ,a a a namely:    , ,
(1 )
ctu x t u x



 


  
 

2 2 23 4 4
4 4 4 3 4 3

3 32 1
4 2 4 3 3 2 4 1

2 2 22
4 4 4 3 2 4 2 2

105 3 273 12 0, ( 21 ) 0, ( 24 9
64 2 2

15 2253 1518 ) 0, ( 42 15 15 ) 0,
4 16 32 64

(6 28 24 18 3 36 6 12
2

ca a caca a a a a a

a caca caa a a a a a a a

aa ca a a ca a a a

  
     

  
       


       

        

        

        3 1 4 012 ) 0,a a a a   
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3 3 1 1
4 3 3 2 4 1 2 1 3 0

2 21
4 1 4 4 2 2 2 3 1 1 4 0

2
2 0 3 1 4 2 4 4 3 2

15 429 3 27( 42 30 30 9 9
4 32 16 32

3 9 ) 0, (8 20 3 4 12 24 6 24
64

12 12 12 ) 0, ( 10 32 18 2

a ca a caa a a a a a a a a a

ca a a a ca a ca a a a a a a

a a a a a a a ca a a

   
        

         

      

        

         

       2 4 2
2 2
2 3 1 1 4 0 2 0 3 1 4 2

3 1 1
3 3 2 4 1 2 1 3 0 1 0

31 1
4 1 2 1 3 2 4 3

3

5 36

12 24 3 24 6 6 6 ) 0,
27 3 35( 6 30 30 18 18 3

2 4 32
33 18 3 3 3 ) 0,

16 32 64
9

(
2

ca a a
a a a a a a a a a a a a

ca a caa a a a a a a a a a a

caa ca a a a a a a a a

a

  

       

  
        

   



  

      

         

      

 3 1 1 1
1 2 1 3 0 1 0 4 1 2 1

3 3
0 1 3 2 1 2 4 3 2 3 3 4

2 2 2
4 4 2 2 1 2 0 3 1 1 4 2 0 2

1

105
18 18 6 18 6

16 2 4 32
3 93 6 3 6 3 3 ) 0,
16 32

( 2 6 2 6 12 12 3 12 6
2

6

ca ca a caa a a a a a a a a a a

a caa a a a a a a a a a a a

caa ca a ca a a a a a a a a a a

a a

 
      

    

       



         

       

           

3 34 4 1 1 1
3 2 4 1 0 2 1 0 1

3 3
3 2 1 2 1 2 4 3 2 3 0 3 3 4 1 4

2 2
1 2 2 0 2 2 1 3 1 3 4 4

3 93 6 ) 0, ( 6 6 6
2 2 4 8 2 16 2

3 1056 6 9 6 6 9 6 9 ) 0,
4 32

(6 4 12 6 12 12 2 10 12

a caa ca a ca caa a a a a a a a

a caa a a a a a a a a a a a a a a a

a a ca a a a a a a a a ca a

   
  

     

 

            

         

         2 4 0 4

31 1 1 1
3 0 1 1 2 1 2 3 2 3

0 3 2 3 3 4 1 4 1 4
2 2 2
1 2 2 0 2 2 1 3 1 3 3 4 4

2 4 0 4

12 ) 0,
273 353( 6 6 18 3 6

8 4 8 2 16 2
18 15 6 18 15 ) 0,

( 6 2 10 12 12 12 24 9 6 32

12 24 1

a a a
caa ca a caca a a a a a a a a a

a a a a a a a a a a
a a ca a a a a a a a a a ca

a a a a

 
  

 





 

           

    

          

  3
2 4 3 4

3 31 1 1
1 2 0 3 2 3 1 4 1 4

23 31
3 4 2 3 1 4 3 4 4 4

2
2 2 2 1 3

1058 ) 0, ( 42 ) 0,
8

9 4293 3 27( 18 18 30 18 30
8 4 8 2 16

15 2251521 ) 0, ( 30 30 42 ) 0, ( 24 24 ) 0,
8 4 8

( 2 12 12 24 18

caa a a a

a caca a ca a a a a a a a a a a

a cacaa a a a a a a a ca a

a ca a a a




   

        

           

     2 2
3 4 4 0 4 2 4 48 56 24 36 12 ) 0,a a ca a a a a a     

 

2 2
2 3 4 4 2 4 4( 6 18 6 54 36 24 ) 0.ca a a ca a a a                            (22) 

From the system of equations (22) we have  

i) 0 1 2 3 4 1 3 2 4
11 1, 0, ,
60 12 10 10 20

,
5
ia a a a a a a iai ia c            
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6
0, ,

0 5
,
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

 
  
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

   


 

       

(24)

 
 

 
Figure 5.1: Graphs of the solution of the fractional RLW Burgers of 

(23) for i. u(x,t) corresponding to the values 0.5  and 0.1    
(Şekil.5.1 0.5   ve 0.1   değerlerine karşılık gelen i. u(x,t) için 

(23) kesirli  RLW Burgers  denkleminin çözümünün grafiği) 
 

From the Definition 2.1 we have the balance term of the 
fractional RLW Burgers equation by using the auxiliary equation (2.3) 
for “Case 2”, is equal to -4 then we have the following system of 
equations 
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2 2 24 4 2
4 4 4 3 4 2

3 3 1
4 3 3 2 4 1

2 22
4 4 3 2 4 2 2 3 1 4 0

3

3 27 33 12 0,( 24 9 18 ) 0,
2 2 4

15 225 15( 42 15 15 ) 0,
16 32 64

(4 18 18 3 36 6 12 12 ) 0,
2

9 135(
4

a ca caca a a a a a

a ca caa a a a a a

aa ca a ca a a a a a a a

a c

  
     

  
     


         



         

      

        

 3 1 1
3 2 4 1 2 1 3 0

2 2
4 4 2 2 2 3 1 1 4 0 2 0

3 3 1 1
2 1 3 0 1 0

3 2730 30 9 9 ) 0,
16 16 32

( 2 6 3 12 24 3 24 6 ) 0,
3 15 9( 18 18 3 ) 0,

4 8 4 16

a a caa a a a a a a a

a ca a ca a a a a a a a a
a ca a ca a a a a a a

  
      

         
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       

   (25) 

2 1 1
3 4 3 1 2 0 1 0

3105( 21 ) 0, (6 12 ) 0, ( 6 ) 0.
64 4 8

a caca a a a a a a a 
              

From the system of equation (3.7) we have 

i) 0 1 2 3 4
1 1 10, , 0, ,
5 20 5

a a a a a c           

 

2 4

1 1 1 1,
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   
       
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(26) 

or 
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   
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

                         

(27) 

 
Figure 5.2 Graphs of the solution of the fractional RLW Burgers of 
(26) for i. u(x, t) corresponding to the values 0.5  and 0.1    

(Şekil.5.2 0.5   ve 0.1   değerlerine karşılık gelen i. u(x,t) için 
(26) kesirli  RLW Burgers  denkleminin çözümünün grafiği) 
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6. CONCLUSION (SONUÇ) 
We have presented a new method and balance term definition and 

used it to solve the fractional RLW Burgers equation. In fact, this 
method is readily applicable to a large variety of fnPDEs. Firstly, 
all fnPDEs which can be solved by the other methods can be solved by 
our method. Secondly, we used only the special solutions of Eq.(14). 
If we use other solutions of Eq. (14), we can obtain more solitary 
wave solutions. Lastly, it is a computerizable method, which allow us 
to perform complicated and tedious algebraic calculation on computer 
and so our balance term definition is effectively useful for any to 
chosen auxiliary equation. 
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