

Engineering Sciences ISSN: 1308 7231 (NWSAENS) Received: January 2018 ID: 2018.13.3.1A0414

Status : Original Study Accepted: July 2018

Yunus Emre Antika Zafer Tatlı

Fatih Calıskan Turgay Tehci

Sakarya University, Sakarya-Turkey yunusemreantika@hotmail.com; ztatlu@sakarva.edu.tr; fcaliskan@sakarya.edu.tr; turgaytehci@sakarya.edu.tr

DOI	http://dx.doi.org/10.12739/NWSA.2018.13.3.1A0414						
OPCTD TD	0000-0002-0675-5354	0000-0002-0981-7143					
ORCID ID	0000-0002-9568-7049	0000-0002-0981-7143					
CORRESPOD	ING AUTHOR Yunus Emre Ant	ika					

TRIP VE DP ÇELİKLERİNDE DİRENÇ NOKTA KAYNAĞI PARAMETRELERİNİN MEKANİK ÖZELLİKLERE ETKİSİ

ÖZ

Otomotiv sektöründe kullanılan Gelişmiş Yüksek Mukavemetli Çelik (AHSS) türlerinden yaygın olarak kullanılan TRIP ve DP çelikleri Direnç Nokta Kaynağı ile kaynatılarak mekanik özellikleri ve mikroyapıları incelenmiştir. Bu amaca yönelik olarak 1mm DP1000 ve 1.5mm TRIP800 levhaların faklı kaynak akımı ve kaynak sürelerinde kaynatılmıştır. Bu işlemden sonra çekme makaslama, mekanize soyma testleri ve sertlik ölçümleri yapılmıştır. Esas metal ve kaynak bölgesi faz analizi için SEM çalışmaları yapılmıştır. Kaynakların çekirdek bölgelerindeki martenzit yoğunluğunun arttığı görülmüştür. Elde edilen sonuçlar mekanize soyma ve çekme makaslama dayanımlarının, artan kaynak akımı ve kaynak süresine bağlı olarak arttığını ayrıca kaynak çekirdeğinin sertlik değerinin de esas metale göre yaklaşık %70 arttığını ortaya koymuştur.

Anahtar Kelimeler: DP ve TRIP celikleri, Direnc Nokta Kaynağı, Gelismis Yüksek Mukavemetli Celikler, Mikroyapı, Mekanik Özellikler

EFFECT OF THE RESISTANCE SPOT WELDING PARAMETERS IN TRIP AND DP STEELS ON MECHANICAL PROPERTIES

ABSTRACT

Advanced High Strength Steels (AHSS) such as TRIP and DP steels are commonly used in the automotive industry were welded with Resistance Spot Welding and their mechanical and microstructural properties were investigated. For this purpose, 1mm DP1000 and 1.5mm TRIP800 plates were welded at different welding currents and welding times. After welding, tensile shear, mechanized peeling tests and hardness measurements of welded plates were investigated. SEM studies and phase analysis were carried out of the main metal and weld zone. The results showed that the strength of the mechanized peeling and tensile shear strength increased with increasing welding current and welding time. Hardness of the weld nuggets were increased about 70% compared to the main metal with increasing welding current and welding time as well.

Keywords: DP and TRIP Steels, Resistance Spot Welding, Advanced High Strength Steel (AHSS), Microstructure, Mechanical Properties

How to Cite:

Antika, Y.E., Tatlı, Z., Çalışkan, F. ve Tehçi, T., (2018). TRIP ve DP Çeliklerinde Direnç Nokta Kaynağı Parametrelerinin Mekanik Özelliklere Etkisi, Engineering Sciences (NWSAENS), 13(3): 217-228, DOI: 10.12739/NWSA.2018.13.3.1A0414.

1. GİRİŞ (INTRODUCTION)

Bir otomobilin her bir parçası için en uygun malzemelerin geliştirilmesi bu parçanın üretilmesinin ilk basamağıdır. Ancak üretim, malzemelerin seçimiyle tamamlanamamaktadır [1 ve 2]. Bu noktada malzemelerin daha üretim aşamasındaki özellikleri, uygulanan işlemler, şekillendirilme, birleştirilme yöntemleri, birleştirme sonrası islemler, kalite kontrolü, üretim olgusunu olusturan ana öğelerdir [2]. Bu calısmada otomotiv sektöründe kullanılan iki farklı celiğin vine bu sektörde genelde tercih edilen kaynak yöntemlerinden olan Direnç Nokta Kaynağının değişken parametreleri ele alınarak bir takım mekanik özelliklerinin incelenmesi hedeflenmistir. Bircok araştırmada [1 ve 4], kaynak parametrelerinin cok yüksek değerlerde seçilmesinin, elektrot yapışması, kaynak metalinin sıçramalar sonucu kayıpların oluştuğu ve tekrarlanabilir kaynakların yapılamadığını belirtmiştir. Wan ve ark., AHSS'nin mükemmel dayanım ve sekillendirilebilirlik özelliğine sahip olması nedeniyle ağırlığı arttırmadan araç çarpışma performansını iyileştirme potansiyelini sağladığını bildirdi [3]. Zhang ve ark., AHSS kullanımıyla bir otomobilin ağırlığının %25 oranında azaltılabileceğini belirtti [4]. Zhang ve ark., bir DP600/DP780 çiftin Direnç Nokta Kaynağı özelliklerini araştırdı ve kaynaklı birleştirmenin makro özellikleri, mikro yapısı ve mekanik özelliklerini ayrıca bunların kaynak parametreleriyle olan ilişkisini değerlendirdi [5]. Pouranvari ve Marashi, çift fazlı DP600, DP780 ve DP980 kalite çeliklerin mekanik performansını araştırmışlar ve ısının, mekanik özellikler üzerinde önemli rol oynadığını bulmuşlardır [6].

Long ve ark. Nokta kaynaklı yüksek mukavemetli çelik levhaların yorulma hatalarını karakterize etmişler [7]. Emel Aydemir ve ark., DP1000 çeliğinin direnç nokta ve uzaktan lazer kaynağı yaptıkları malzemelerin çekme ve yorulma dayanımlarını incelemişler ve her iki kaynak yönteminde' de çekirdeğin esas metale göre daha sert olduğunu yorulma dayanımlarının da benzer olduğunu ortaya koymuşlardır [8]. Hayat, F. ve Demir, B., DP600 çeliğinin direnç nokta kaynaklı birleştirmelerde kaynak süresinin dalma derinliğine ve dayanıma etkisini incelemişler ve kaynak süresinin artması ile çekirdek capının artığını buna paralel dayanımın artığını belirtmişlerdir [9]. Akinay,Y ve Hayat, F., DP450 çelik ve alüminyum alaşımlarının (AA1050, AA6061 ve AA7075) mekanik özelliklerini araştırılmış ve DP450/AA1050 ve DP450/AA7075 bağlantılarının çekme kayma mukavemetinin, kaynak arayüzeyinde oluşan reaksiyon etkilenmediğini ve DP450/AA6061'in kaynaklanabilirliğinin DP450/AA1050 ve DP450/AA7075 nokta Al alaşımlarından daha iyi olduğunu belirtmişlerdir [10]. Sevim, İ., ve Hayat, F., galvanizli DP600 çeliklerinin dirençli nokta kaynaklı bağlantılarının kırılma dayanımını değerlendirmiş ve galvanizli DP600 çelik levhalar için kırılma tokluğunun kaynak akımına, kaynak süresine ve kaynak bölgesinin sertliğine olan bağımlılığını belirterek kaynak akımı ve kaynak süresi belirli bir değere yükseldikçe kırılma tokluğunu artırdığını daha sonra kırılma tokluğunun azalmaya başladığını kırılma tokluğunun, kaynak bölgesinin sertliği ile değiştiği belirtmiştir [11]. Yapılan çalışmalar değerlendirildiğinde elde edilen sonuçların benzer olduğu görülmüştür. Bu çalışmada ise 1mm DP1000 ve 1.5mm TRIP800 levhalar faklı kaynak akımı ve kaynak sürelerinde kaynatılmıştır. Bu işlemin akabinde uluslararası standartlara göre çekme makaslama, mekanize soyma testleri ve sertlik ölçümleri yapılarak en iyi sonuçların elde edildiği kaynakların metalografik incelemesi yapılmıştır. Yapılan çalışmalarda da değinilen sonuçlara benzer olarak kaynaklanan malzemelerin SEM görüntüleri incelendiğinde ITAB ve çekirdek bölgelerinde meydana gelen yapı farklılıkları görülmüş ve bunun sebebinin ani soğuma olduğunu düsünülmüştür.

2. ÇALIŞMANIN ÖNEMİ (RESEARCH SIGNIFICANCE)

Otomobil endüstrisindeki artan gereksinimleri, emniyet, yakıt verimliliği, çevreci olma, üretile bilirlik, dayanıklılık ve kalite gibi başlıklar altında toplayabiliriz. Bu ihtiyaçları karşılayabilmek için gereken malzemeyi belirlemek en önemli noktalardan biridir. Bu çalışma otomotiv endüstrisinde kullanılan çeliklerin mekanik özelliklerinin tanımlanarak otomotiv sektörüne kaynaklık edecek ve sonraki çalışmalara ışık tutacak bir dokümanın oluşması hedefi çalışmanın önemini ortaya koymaktadır.

3. DENEYSEL ÇALIŞMALAR (EXPERIMENTAL METHODS)

3.1. Deneylerde Kullanılan Malzemelerin Kimyasal Kompozisyonu (Chemical Composition of Materials Used in Experiments)

Bu çalışmada otomotiv sektöründe kullanılan iki farklı çekme mukavemetine sahip AHSS türü kullanılmıştır. Kullanılan bu malzemelerin kimyasal içerikleri Tablo 1'de sunulmuştur

Tablo 1. Deneylerde kullanılan malzemelerin kimyasal kompozisyonu

(Tai	pie i.	Chem	ıcal	composition of			materials used		in experi		iments)		
	Al	Si	Р	Ti	Cr	Mn	Fe	Ni	Cu	С	Мо	W	Pb
DP1000	0.159	0.513	0.222	0.225	0.073	1.183	89.536	0.293	0.973	0.167	0.496	0.123	5.267
TRIP800	0.179	3.032	0.239	0.137	0.105	0.885	89.029	0.166	0.363	0.195	0.117	1.505	3.186

Deneyler için 120kVA, pnömatik, mikro işlemci kontrollü ve su soğutmalı, sabit tip Direnç Nokta Kaynak makinesi kullanılmıştır. Kaynak zamanı için periyot (1 periyot 0.02s) değerleri 15p, 20p ve 25p olarak seçilmiş ve kaynak akımı 2kA'lik artışla 6, 8 ve 10 kA aralığında ayarlandı. Sıkıştırma kuvveti 4kN'da sabitlenmiştir (Tablo 2).

Table 2 Çevrim adımları ve değerleri (Table 2 Cycle steps and their values)

(lable z cycle steps and there values)										
Yaklaş	sma	Sıkıştırma	Kaynak	Kaynak	Bekleme	Uzaklaşma	Soğutma	Sıkıştırma		
Zamar	าา	Zamanı	Akımı	Zamanı	Zamanı	Zamanı	Suyu	kuvveti		
(periy	ot)	(periyot))	(kA)	(periyot)	(periyot)	(periyot)	(l/dk)	(kN)		
25		25	6-8-10	15-20-25	25	25	0.20	4		

Kaynatılan numuneler Çekme makaslama ve Mekanize soyma testlerine tabi tutulmuşlardır. Çekme makaslama testinde kullanılan numuneler TSEN ISO 14273 standardına uygun olarak 45x105mm ebatlarında kesilmiş ve yine aynı standartta belirtildiği üzere Şekil 1'deki gibi kaynatılmıştır ardından Şekil 2'de görüldüğü üzere çekme makaslama testine tabi tutulmuştur [12].

Şekil 1. Çekme testi numunesinin kaynak şekli ve ölçüleri (Figure 1. Weld shape and measurements of the tensile test specimen)

Şekil 2. Çekme testinin uygulanışı (Figure 2. Application of the tensile test)

Şekil 3. Mekanize soyma testi için numune ölçüleri (a) ve test için uygun şekil(b) (Figure 3. Specimen measurements for the Mechanized Peel Test and suitable shape for the test)

NWSA

TSEN ISO Mekanize soyma testinde kullanılan numuneler 14270 standardına uygun olarak 45x125mm ebatlarında kesilmiş standartta belirtildiği üzere üst üste konularak kaynatılmıştır (Şekil 3a) [13]. Sonrasında Şekil 3b'de ki şekle getirilerek mekanize soyma testi uygulanmıştır. Bu test yöntemindeki amaç yapılan kaynakların soyulmaya karşı maksimum dayanım değerlerini elde etmektir. Sertlik ölçümleri, diyaqonal sertlik ölcümü Wolpert Wilson marka cihazda Vickers sertlik ölcüm yöntemi ile birinci levhadan ikinci levhaya doğru esas metalden baslavıp ITAB ve cekirdek bölgelerini gecerek ikinci esas metalde sonlanacak sekilde yapılmıstır. Sertlik değerleri belirtilen sertlik ölcüm yönünde 0.5mm'lik aralıklarla 200gr yük altında alınmıstır. Kaynakların çekirdek bölgelerinde ısının etkisi ile meydana gelen değişimlerin incelenebilmesi için esas metal ITAB ve cekirdek bölgelerinin görüntülenmesi için Taramalı Elektron Mikroskobu (SEM) mikroskop JEOL JSM-6060LV marka kullanılmıştır. Elde edilen görüntülere dayanarak bölgelerde meydana gelen değişimler gözlemlenmiş ve yorumlanmıştır.

4. BULGULAR VE TARTIŞMA (FINDINGS AND DISCUSSIONS)

4.1. Çekme Testinin Sonuçları (Results of Tensile Test)

Deneyden elde edilen maksimum dayanım değerleri 25 periyot için Şekil 4'de, 20 periyot için Şekil 5'de, ve 15 periyot için Şekil 6'da grafikler yardımıyla gösterilmiştir.

Şekil 4. 6-8-10kA'de ve 25p yapılan kaynakların çekme makaslama dayanımı (Figure 4. Tensile shear strength of welds made at 6-8-10kA and 25p)

Şekil 5. 6-8-10kA'de ve 20p yapılan kaynakların çekme makaslama dayanımı

(Figure 5. Tensile shear strength of welds made at 6-8-10kA and 20p)

Şekil 6. 6-8-10kA'de ve 15p yapılan kaynakların çekme makaslama dayanımı

(Figure 6. Tensile shear strength of welds made at 6-8-10kA and 15p)

1.5mm kalınlığındaki TRIP800 ile TRIP800 plakaların kaynağında en yüksek dayanım 10kA ve 25p'da 16970N olarak ölçülmüştür. 1mm kalınlığındaki DP1000 ile DP1000 plakaların kaynağında en yüksek dayanım 8kA ve 25p'da 14680N olarak ölçülmüştür. DP1000 ile TRIP800 plakaların kaynağında en yüksek dayanım 10kA ve 25p'da 15070N olarak ölçülmüştür. Kaynatılan malzemelerin çekme makaslama dayanımlarına genel olarak bakıldığında sonuçların artan kaynak akımı ve kaynak süresine bağlı olarak arttığı görülmüştür. Ancak doğru orantılı olarak artan bu değerler sıçrama ve elektrot yapışmasıyla sonuçlanan 10kA in üzerindeki kaynak akımlarına ve daha yüksek kaynak sürelerine çıkıldığında düşüş gösterdiği de tespit edildiğinden optimum değerler olarak alınan bu değerlere göre kaynak akımı ve kaynak süresine bağlı olarak dayanımın arttığı değerlendirilmektedir. Kaynak yapılan tüm malzemelerde genel olarak martenzit yapısının bulunması (Şekil 13 ve 15) ve kaynağın ardından hızlı soğuma sonrası bulunan martenzit miktarının artması mukavemet artışını etkilemektedir. Yapılan kaynakların esas metal, ITAB ve çekirdek sertliklerine bakıldığında (Şekil 10 ve 12) kaynak akımının artırılması ile çekirdek sertliğinin de arttığı görülmektedir. Diğer bir husus ise kaynak işlemi sırasında akım ve kaynak süresi arttıkça yüzey girintisi artmakta ve buna bağlı olarak çekirdek kesitinde daralma meydana gelmektedir. Belki bir miktar çekirdeğin çapı artmakta ancak yüksekliği daralmakta olduğundan ve dayanımın bu kesite bağlı olmasından dolayı bu hususta da optimum değerin (10kA) üzerine çıkılmaması gerektiği düşünülmüştür.

4.2. Mekanize Soyma Testinin Sonuçları (Results of Mechanized Peel Test)

Deneyden elde edilen maksimum dayanım değerleri 25 periyot için Şekil 7'de, 20 periyot için Şekil 8'de, ve 15 periyot için Şekil 9'da grafikler yardımıyla tanımlanmıştır.

Şekil 7. 6-8-10kA'de ve 25p yapılan kaynakların mekanize soyma dayanımı

(Figure 7. Mechanized Peel strength of welds made at 6-8-10kA and 25p)

Şekil 8. 6-8-10kA'de ve 20p yapılan kaynakların mekanize soyma dayanımı

⁽Figure 8. Mechanized Peel strength of welds made at $6-8-10\,kA$ and $20\,p$)

Şekil 9. 6-8-10kA'de ve 15p yapılan kaynakların mekanize soyma dayanımı

(Figure 9. Mechanized Peel strength of welds made at 6-8-10kA and 15p)

Kaynatılan malzemelerin mekanize soyma dayanımları, grafiklerden incelendiğinde burada da çekme makaslamada olduğu gibi genel olarak artan kaynak akımı ve kaynak süresine bağlı olarak dayanımın arttığı görülmüştür. 1.5mm kalınlığındaki TRIP800 ile TRIP800 plakaların kaynağında en yüksek dayanım 10 kA ve 25p'da 1995N olarak ölçülmüştür. 1mm kalınlığındaki DP1000 ile DP1000 plakaların kaynağında en yüksek dayanım 10 kA ve 25p'da 1590N olarak ölcülmüstür. DP1000 ile TRIP800 plakaların kaynağında en yüksek dayanım 10 kA ve 25p'da 1905N olarak ölcülmüstür. Yapılan incelemeler neticesinde ince taneli yapıya sahip bu çelik türlerinin yapılarında bulunan ferrit, beynit ve martenzit oranlarına bağlı olarak kaynak sırasında ki kaynak akımı, kaynak süresi ve soğuma hızının etkisi ile kaynakların çekme makaslama ve mekanize soyma dayanımlarının değiştiği görülmüştür. Mekanize soyma testinin sonucları bu tür celiklerin soyulmaya karşı diğer bir değisle kaynağa dik yönde uygulanan kuvvetlere karşı çekme makaslamaya oranla %90 gibi oldukca dikkat cekici bir fark olduğu görülmüstür. Cekme makaslama testinde kullanılan aynı kaynak parametreleri ve aynı çelik türleri kullanıldığı için bu düşüşün sebebinin kaynağa uygulanan kuvvetin yönü olduğu düşünülmektedir. Kaynağa uygulanan kuvvetin yönünün değişmesi sonucu ortaya çıkan bu dayanım farkından dolayı tasarım yapılırken bu hususun göz önünde bulundurulması gerekmektedir.

4.3. Mikro Sertlik Testinin Sonuçları (Results of Microhardness Test)

Yapılan diyagonal sertlik ölçümünde çekirdeğin, ITAB'ın ve esas malzemenin sertlik değeri ölçülmüş ve sonuçları TRIP800 ile TRIP800'ün Şekil 10'da, TRIP800 ile DP1000'in Şekil 11'de DP1000 ile DP1000'in Şekil 12'de ki grafikler ile belirtilmiştir.

Şekil 10. TRIP800 ile TRIP800'ün 6-8-10kA ve 25p'de ki sertlik profili (Figure 10. Hardness profile of TRIP800 and TRIP800 at 6-8-10kA and 25p)

Şekil 11. TRIP800 ile DP1000'in 6-8-10kA ve 25p'de ki sertlik profili
(Figure 11. Hardness profile of TRIP800 and DP1000 at 6-8-10kA and
25p)

Şekil 12. DP1000 ile DP1000'in 6-8-10kA ve 25p'de ki sertlik değerleri (Figure 12. Hardness profile of DP1000 and DP1000 at 6-8-10kA and 25p)

TRIP800 ve DP1000'in hem kendi aralarında hem de birbirleri ile yapılan kaynaklarında, çekirdeğindeki sertlik değerlerinin esas metale göre yaklaşık %70'lik artış olduğu görülmüştür (Şekil 10 ve 12). En yüksek sertlik değeri 10kA ile yapılan çekirdek bölgesinde olmasına rağmen 6 ve 8kA ile yapılan kaynaklarda sertlik değeri çok fazla bir değişiklik göstermediği gözlemlenmiştir. Esas metalden çekirdeğe doğru ilerlenirken oluşan küçük sertlik farklılıklarının ani ısı girdisi ve de ani soğuma sonucu bu tür malzemelerde görülen tane irileşmesinden ve bu bölgelerdeki homojen yapı dağılımının ısı tesiri ile çekirdek bölgesinde (Şekil 13 ve 15) kümeleşmesinden kaynaklandığı düşünülmektedir.

4.4. Metalografik İnceleme Sonuçları (Results of Metallographic Examination)

Kaynak işlemi esnasında malzemenin göstermiş olduğu dirence bağlı olarak artırılan kaynak akımı ısı girdisinin artmasına sebebiyet vermektedir. Bu ısı girdisi kaynak süresininde etkisiyle mikro yapının değişmesi kaçınılmaz olmaktadır. Yaptığımız kaynakların mikro yapıları incelendiğinde esas metal (EM), ısı tesiri altındaki bölge (ITAB) ve çekirdek bölgelerindeki değişiklikler olduğu gözlemlenmiştir. Bu bölümde incelen mikro yapılar 10 kA kaynak akımı ve 25 periyot kaynak süresinde ile yapılan kaynaklara 10000 büyütmede alınmış görüntülerdir.

Esas Metal görüntüsü ITAB görüntüsü Çekirdek görüntüsü (a) (b) (c) Şekil 13. Kaynatılan TRIP 800 ile TRIP 800'ün esas metal (a), ITAB (b) ve cekirdeğin (c) SEM görüntüleri

(Figure 13. SEM images of base metal (a), ITAB (b) and nugget (c) of welded TRIP 800 and TRIP 800)

Esas Metal görüntüsü ITAB görüntüsü Çekirdek görüntüsü (a) (b) (c) Şekil 14. Kaynatılan DP1000 ile DP1000'in esas metal (a), ITAB (b) ve

Çekirdeğin (c) SEM görüntüleri (Figure 14. SEM images of base metal (a), ITAB (b) and nugget (c) of welded DP1000 and DP1000)

ITAB görüntüsü (a)

(a) (b) Şekil 15. Kaynatılan DP1000 ile TRIP800'ün ITAB (a) ve Çekirdek (b) SEM görüntüleri

(Figure 15. SEM images of base metal (a), ITAB (b) and nugget (c) of welded DP1000 and TRIP 800)

Kaynaklanan malzemelerin SEM görüntüleri incelendiğinde ITAB ve çekirdek bölgelerinde meydana gelen yapı oranlarında farklılıkları görülmüştür (Şekil 13 ve 15). Esas Metal'de bulunan ferrit ve beynit ITAB'da bir miktarını, çekirdekte ise yerini neredeyse tamamen martenzite bırakmaktadır (Şekil 13 ve 15). TRIP800'ün ferrit matris üzerine yayılmış beynit ve martenzitlerden oluştuğu görülmüştür. DP1000'in ise ferrit matris üzerine yayılmış martenzitlerden oluştuğu görülmüştür

5. SONUÇ VE ÖNERİLER (CONCLUSION AND RECOMMENDATIONS)

Yapılan incelemeler neticesinde ince taneli yapıya sahip bu çelik türlerinin çekme makaslama dayanım grafikleri incelendiğinde genel olarak sonuçların artan kaynak akımı ve kaynak süresine bağlı olarak arttığı görülmüştür. Kaynak süresinin artırılması çekirdeğin çapı artırmakta ancak yüksekliği daralmakta olduğundan ve dayanımın bu kesite bağlı olmasından dolayı bu hususta da optimum değerin (10kA) üzerine çıkılması gerektiği düşünülmüştür. TRIP800 ve DP1000'in hem kendi aralarında hem de birbirleri ile yapılan kaynaklarında, çekirdeğindeki sertlik değerlerinde esas metale göre yaklaşık %70'lik artış olduğu görülmüştür.

NOT (NOTICE)

Bu çalışma, 21-23 Eylül 2017 tarihinde Bayburt'ta düzenlenen International Conference on Advanced Engineering Technologies (ICADET) Konferansında sözlü bildiri olarak sunulmuş ve yeniden yapılandırılmıştır.

KAYNAKLAR (REFERENCES)

- [1] Keeler, S., Kimchi, M., and Mooney., P.J., (2017). Advanced High-Strength Steels Application Guidelines Version 6.0.
- [2] Jin, Y., (2011). Development of Advanced High Strength Steels for Automotive Applications La Metallurgia Italiana, n:6.
- [3] Wan, X., Wang, Y., and Zhang, P., (2014). Modelling the Effect of Welding Current on Resistance Spot Welding of DP600. J. Mater. Proc. Technol. 214, 2723-2729.
- [4] Zhang, X., Chen, G., Zhang, Y., and Lai, X., (2009). Improvement of Resistance Spot Weldability for Dual-Phase (DP600) Steels Using Servo Gun. J. Mater. Proc. Technol. 209, 2671-2675.
- [5] Zhang, H.Q., Qiu, X.M., Bai, Y., Xing, F., Yu, H.Y., and Shi, Y.N., (2014). Resistance Spot Welding Macro Characteristics of the Dissimilar Thickness Dual Phase Steels. Mater. Des. 64:151– 158.
- [6] Pouranvari, M. and Marashi, S.P.H., (2010). Key Factors Influencing Mechanical Performance of Dual Phase Steel Resistance Spot Welds. Sci. Technol. Weld. Join.15, 149-155.
- [7] Long, X. and Khanna, K., (2007). Fatigue Properties and Failure Characterization of Spot Welded High Strength Steel Sheet. Int. J. Fatigue, 29(5), 879-886.
- [8] Aydemir, E., Aydemir, B., and Kaluç, E., (2012). Otomotiv Endüstrisinde Kullanılan DP 1000 Çelik Saçların Direnç Nokta Kaynağı (RLW) ve Uzaktan Lazer Kaynağı (RLW) Yöntemleri İle Oluşturulmuş Bağlantıların Yorulma Davranışlarının İncelenmesi. Kaynak Kongresi IX. Ulusal Kongre Ve Sergisi Bildiriler Kitabı, 181-189.
- [9] Hayat, F. ve Demir, B., (2009). Ticari DP600 Çeliği Sacı NDK Birleştirmelerde Kaynak Süresinin Dalma Derinliği Ve Dayanıma Etkisi, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS'09).
- [10] Akinay, Y. and Hayat, F., (2016). Investigation of Resistance Spot Welds between DP450 Steel and Aluminum Alloys. Materials Testing: Vol:58, No:5, pp:408-412.
- [11] Sevim, İ. and Hayat, F., (2012). The Effect of Welding Parameters on Fracture Toughness of Resistance Spot-Welded Galvanized DP600 Automotive Steel Sheets, The International Journal of Advanced Manufacturing Technolog, Vol:58, pp:1043-1050.
- [12] European Standard., (2016). TS EN ISO 14270: Specimen Dimensions and Procedure for Mechanized Peel Testing Resistance Spot, Seam and Embossed Projection Welds.

[13] European Standard., (2016). TS EN ISO 14273: Specimen Dimensions and Procedure for Shear Testing Resistance Spot, Seam and Embossed Projection Welds.