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MATRIX ALGEBRAS IN 𝐄𝜶𝜷
𝟒  AND THEIR APPLICATIONS 

 

 ABSTRACT 

 By Hamilton operators, generalized quaternions have been 

expressed in terms of 4×4 matrices. In this paper, geometric 

applications of these matrices in generalized 4-space 4E
are given. We 

also show that the set of these matrices with the group operation of 

matrix multiplication is Lie group of 6-dimension. 

 Keywords: De Moivre’s Formula, Homothetic Motion, Lie Group, 

                Rotation, Matrix 

 

𝐄𝜶𝜷
𝟒 ’DE MATRIS CEBİRİ VE UYGULAMALARI 

 ÖZET 

 Hamilton operatorleri ile bir gelişmiş kuaterniyon 4×4 

matrisleri ile gösterilmiştir. Bu makalede matrislerin uygulamaları 

gelişmiş uzay’da verilmiştir. Ayrıca, bu matrislerin kümesi matris 

çarpım ile altı boyutlu bir Lie grubu oluşturulmuştur. 

 Anahtar Kelimeler: De Moivre’s Formülü, Homothetik Hareket, 

                         Lie Grubu, Dönme, Matris 
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1. INTRRODUCTION (GİRİŞ) 
 The quaternions are commonly used in physics, chemistry, 

robotics, mechanics and electronics. A brief introduction of the 

generalized quaternions is provided in [5], the subject which have 

investigated in algebra [6]. The generalized quaternion algebra is an 

associative and non-commutative 4-dimensional Clifford algebra. 

Recently, we have studied the generalized quaternion and some of their 

algebraic properties [1]. A matrix corresponding to Hamilton 

operators, defined for the generalized quaternions, determines a 

Homothetic motion and also can be used to described the rotation in 4-

dimensional space in
4E .

In addition, by De-Moivre's formula every power 

of this matrix is immediately obtained. 

 

2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ) 
 In this work, after a review of some fundamental properties of 

the generalized quaternions, we study the applications of matrices 

corresponding to generalized quaternions. The set of these matrices 

with the group operation of matrix multiplication is Lie group of 6-

dimension. Finally, we give some example for the purpose of more 

clarification. 

 

3. EXPERIMENTAL METHOD-PROCESS (DENEYSEL ÇALIŞMA)  
 In this section, we define a new inner product and give a brief 

summary of the generalized quaternions. 

 Definition (Tanım) 1:Let 4

1 2 3 4 1 2 3 4( , , , ), ( , , , ) R .u u u u u v v v v v    If  , R ,    

the generalized inner product of u  and v  is defined by 

1 1 2 2 3 3 4 4, .u v u v u v u v u v         

It could be written  

1 0 0 0

0 0 0
, .

0 0 0

0 0 0

T Tu v u u G v






 
 
  
 
 
 

 

 Also, if 0, 0   , ,u v  is called the generalized Lorentz an 

inner product. The vector space on 
4R  equipped with the generalized 

inner product is called 4-dimensional generalized space and denoted by 
4E .
 

 Definition (Tanım) 2: A matrix A  is called a quasi-orthogonal 

matrix if 
TA A  and det 1A  where  

1 0 0 0

0 0 0
,

0 0 0

0 0 0








 
 
 
 
 
 

 

 And , R.    the set of all quasi-orthogonal matrices, QO(3), with 

the operation of matrix multiplication is called rotations group in 4-

spaces 4E
 [2]. 
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 Definition (Tanım) 3: A generalized quaternion q  is an expression 

of the form 

0 1 2 3q a a i a j a k   
 

 Where
0 1 2, ,a a a  and 

3a  are real numbers and , ,i j k  are quaternionic 

units satisfying the equalities 

2 2 2, , ,

, ,

i j k

ij k ji jk i kj

  



     

     

 

 and 

, , R.ki j ik       

 The set of all generalized quaternions is denoted by
  . We 

express the basic operations in the , ,i j k form. The addition becomes as 

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

( ) ( )

( ) ( ) ( ) ( )

a a i a j a k b b i b j b k

a b a b i a b j a b k

      

       

 

 and the multiplication as 

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3

( )( )

( )

( )

( )

( ) .

a a i a j a k b b i b j b k

a b a b a b a b

a b a b a b a b i

a b a b a b a b j

a b a b a b a b k

  

 

 

     

   

   

   

   

 

Given 
0 1 2 3q a a i a j a k    , 

0a is called the scalar part of ,q denoted 

by   0 ,S q a
 

    
and

1 2 3 a i a j a k is called the vector part of ,q denoted by 
 

1 2 3( ) .V q a i a j a k    

 The conjugate of q is 

0 1 2 3 .q a a i a j a k     

 The norm of q is 

2 2 2 2

0 1 2 3 .qN qq qq a a a a         

 The inverse of q  with 0,qN   is  

1 1
.

q

q q
N

   

 Clearly 1 1 0 0 0 .qq i j k      Note also that qp pq  and 
1 1 1( )qp p q  

[1]. 

 

 Definition (Tanım) 4: A Lie group is a group G, equipped with a 

manifold structure such that the group operations 

Mult: G×G→G, (g1, g2)→g1g2 

Inv: G→G, g→g−1  are smooth. 
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For example, the general linear group 

GL( , ) { Mat (R) :det 0}nn A A    

is an open subset of Mat (R),n
hence a sub manifold, and the smoothness 

of group multiplication follows since the product map for Mat (R),n
 is 

obviously smooth[4]. 

 

 Definition (Tanım) 5:Left multiplication by a generalized 

quaternion q is a linear map 

( ) , H ,qh x qx x 



   

    from the quaternions into the quaternions, as is right 

multiplication, 

( ) H .qh x xq x 



   

 Since these multiplications are linear maps from four 

dimensional vector space into itself, we can find a matrix 

representation of each. 

The Hamilton operators 
+

H  and ,H


 could be represented as the matrices; 

 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( ) (1)

  

 

 



   
 


 
 
 

 

a a a a

a a a a
H q

a a a a

a a a a

 

and 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( ) . (2)

  

 

 



   
 


 
 
 

 

a a a a

a a a a
H q

a a a a

a a a a

 

 Theorem (Teorem) 1: If q and p are two real quaternions, λ is a 

real number and 

+

H and H


 are operators as defined in equations 

(1) and (2), respectively, then the following identities hold: 

1. 
+ +

( ) ( ) ( ) ( ).q p H q H p H q H p
 

      

2. ( ) ( ) ( ), ( ) ( ) ( ).H q p H q H p H q p H q H p
     

       

3. ( ) ( ), ( ) ( ).H q H q H q H q   
   

   

4. ( ) ( ) ( ), ( ) ( ) ( ).H qp H q H p H qp H p H q
     

   

5. 
1 1

1 1 2( ) ( ) , ( ) ( ) , ( ) 0.qH q H q H q H q N

 
   

    
        

 

6. ( ) ( ) , ( ) ( ) .

T T

H q H q H q H q
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7. 2 2det ( ) ( ) , det ( ) ( ) .q qH q N H q N
    

       
 

8. 
0 0( ) 4 , ( ) 4 .tr H q a tr H q a

    
       

 

 Proof: The proof can be found in [1]. 

 

 Theorem (Teorem) 2: The map  

(4,R): (H , ,.) (M , , )      

defined as 

0 1 2 3

1 0 3 2

0 1 2 3

2 3 0 1

3 2 1 0

( i j k)

a a a a

a a a a
a a a a

a a a a

a a a a

  

 


 

   
 


   
 
 

 

 

 is an isomorphism of algebras.  

 Proof: See [7] for a similar proof. 

 

 Theorem (Teorem) 3: Let 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

: , 1 4 .i

x x x x

x x x x
A x i

x x x x

x x x x

  

 

 

    
  

        
  
      

 

 Then   is a differentiable manifold. 

 Proof: Let us consider the following function: 

4

0 1 2 3

: E

( ) ( , , , ),

f

A f A x x x x



 
 

 
f is one-to-one and on to function, and since 4( ) E f then ( )f 

is open set. Furthermore, since ,ix 1,2,3, 4i  are continuously, and then

1,f f 
are continuously functions.  ( , )f 

 
is a differentiable atlas with 

one chart, so   is a differentiable manifold. 

 

 Theorem (Teorem) 4: Under matrix multiplication,  * 0   is a 

Lie group of dimension 6. 

 Proof: 
* under matrix multiplication is a matrix group. Also,

*  

is a sub manifold of . Furthermore, the group operations 

 

Mult : * * *

1 2 1 2, ( , )A A A A     

Inv: * * 1, A A     

 are obviously smooth. 

http://en.wikipedia.org/wiki/Differentiable
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 Let us find the left algebra, i.e., the tangent space at the 

unit elementary, *T ( ).e  Let us consider the map 4 *: E {0} ,    defined by 

0 1 2 3

1 0 3 2

1 2 3 4

2 3 0 1

3 2 1 0

( , , , )

x x x x

x x x x
x x x x

x x x x

x x x x

  

 

 

   
 


  
 
 

 

. 

 

 For point (1,0,0,0)p  , 
4( )p e I    is identity element of 

*.  

 
Theorem (Teorem) 5: Consider the map 4 *

* p (p): T E T .
P      This map 

is one-to-one.
 

 Proof: If we show that 
*( ) 0 0p pV V    then Theorem is proved. 

For every
4

pT E ,pV  we have
1 1 2 2 3 3 4 4 ,pV a x a x a x a x            so 

 

       
       
       
       

p 1 p 2 p 3 p 4

p 2 p 1 p 4 p 3

* p

p 3 p 4 p 1 p 2

p 4 p 3 p 2 p 1

V x V - x V - x V - x

V x V x V - x V x
(V )

V x V x V x V - x

V x V -x V x V x

P

  

 

 

 
 
  
 
 
  

 

 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

0 ,

a a a a

a a a a

a a a a

a a a a

  

 

 

   
 


  
 
 

   
 

 Then
1 2 3 4 0.a a a a    So, 

* an injective map. On the other hand, 

4 *

pdimT E dimT 4,e     thus, 
* is a linear isomorphism. Since every 

linear isomorphism maps any basis of space to another one. So we 

determine the basis of space 
*

(p)T .   

 It is obviously that  4

p 1 2 3 4T E Sp , , , .x x x x         
 
We find the 

image of this basis under the map 
*.  

 

1 2 3 4

2 1 4 3

*

3 4 1 21 1

4 3 2 1

1 0 0 0

0 1 0 0
( )

0 0 1 0

0 0 0 1

P

x x x x

x x x x

x x x xx x

x x x x

  

 

 

     
          
    
   

   

 

1 2 3 4

2 1 4 3

*

3 4 1 22 2

4 3 2 1

0 0 0

1 0 0 0
( )

0 0 0

0 0 1 0

P

x x x x

x x x x

x x x xx x

x x x x
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1 2 3 4

2 1 4 3

*

3 4 1 23 3

4 3 2 1

0 0 0

0 0 0
( )

1 0 0 0

0 1 0 0

P

x x x x

x x x x

x x x xx x

x x x x

   

  

 

      
          
    
   

   
 

1 2 3 4

2 1 4 3

*

3 4 1 24 4

4 3 2 1

0 0 0

0 0 0
( )

0 0 0

1 0 0 0

P

x x x x

x x x x

x x x xx x

x x x x

   

  

  

      
           
    
   

   
 

So we have 

*

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0
T Sp , , , .

0 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

e

  

 

 

           
        

           
        
                

 

 

 Theorem (Teorem) 6: (De Moivre’s formula) Let matrix  

1 2 3

1 3 2

2 3 1

3 2 1

cos sin sin sin

sin cos sin sin
, (3)

sin sin cos sin

sin sin sin cos

      

     

     

   

   
 


 
 
 

 

u u u

u u u
A

u u u

u u u

 

 correspond to generalized quaternion .q   The n -th power of the 

matrix A  reads as 

1 2 3

1 3 2

2 3 1

3 2 1

cos sin sin sin

sin cos sin sin
.

sin sin cos sin

sin sin sin cos

n

n u n u n u n

u n n u n u n
A

u n u n n u n

u n u n u n n

      

     

     

   

   
 


 
 
 

 

 

 Proof: The proof is easily followed by induction on n. 

 Example (Örnek) 1: Let 1 1 1 1 1
( , , ) cos sin

2 2 3 3
q u

 

  
    be a unit 

generalized quarternion. The matrix corresponding to this 

quaternion is  

1

2 2 2 2

1 1

2 22 2
,

1 1

2 22 2

1 1 1 1

22 2 2

A
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 every power of this matrix with the aid of Theorem 6 is found to 

be expressible similarly, for example, 28-this 

28

1

2 2 2 2

1 1

2 22 2
.

1 1

2 22 2

1 1 1 1

22 2 2

A

 

 

 

 

 

  

 
 

 
 
   

 
  
   
 
 
   
 
   

 

 Definition (Tanım) 6: (Euler’s formula)Let 

1 2 3

1 3 2

2 3 1

3 2 1

0

0
,

0

0

u u u

u u u
A

u u u

u u u

  

 

 

   
 


 
 
 

 

 

 be a real matrix. One immediately finds 2

4.A I 
 
We have a 

natural generalization of Euler's formula for matrix A ; 

     
2 3 4

4

2 3 5

4

4

...
2! 3! 4!

4
(1 ...) ( ...)

2! 4! 3! 5!

cos .sin

A
A A A

e I A

I A

I A


  



   


 

     

       

 

 

1 2 3

1 3 2

4

2 3 1

3 2 1

1 2 3

1 3 2

2 3 1

3 2 1

0

0
cos .sin

0

0

cos sin sin sin

sin cos sin sin
.

sin sin cos sin

sin sin sin cos

u u u

u u u
I

u u u

u u u

u u u

u u u

u u u

u u u

  

 
 

 

      

     

     

   

   
 


  
 
 

 

   
 


 
  
 

 

 

 Let cos sinq u   be a unit generalized quaternion. The matrix 

associated with this quaternion q  is of the form (3). In a more 

general case, we substitute the matrix (3) by 

1 2 3

1 3 2

2 3 1

3 2 1

cos( 2 ) sin( 2 ) sin( 2 ) sin( 2 )

sin( 2 ) cos( 2 ) sin( 2 ) sin( 2 )

sin( 2 ) sin( 2 ) cos( 2 ) sin( 2 )

sin( 2 ) sin( 2 ) sin( 2 ) cos( 2

k u k u k u k

u k k u k u k
A

u k u k k u k

u k u k u k k

          

         

         

       

      

    


     

    

,

)

 
 
 
 
 
 

 

where Z.k  The equation 
nx A  has n roots, and they are as follows 
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1 2 3

1 1 3 2

2 3 1

3 2 1

2 2 2 2
cos( ) sin( ) sin( ) sin( )

2 2 2 2
sin( ) cos( ) sin( ) sin( )

2 2 2 2
sin( ) sin( ) cos( ) sin( )

2 2
sin( ) sin( ) si

n
k

k k k k
u u u

n n n n

k k k k
u u u

n n n n
A

k k k k
u u u

n n n n

k k
u u u

n n

       
  

       
 

       
 

   

   
  

   



   

 

 


.

2 2
n( ) cos( )

k k

n n

   

 
 
 
 
 
 
 
 
  
 
 

 

     For 0k  , the first root is  

1 2 3

1 1 3 2

0

2 3 1

3 2 1

cos( ) sin( ) sin( ) sin( )

sin( ) cos( ) sin( ) sin( )

,

sin( ) sin( ) cos( ) sin( )

sin( ) sin( ) sin( ) cos( )

n

u u u
n n n n

u u u
n n n n

A

u u u
n n n n

u u u
n n n n

   
  

   
 

   
 

   

 
   

 
 
 

  
  
 
 
 
 

 

 and for 1,k  the second root is 

1 2 3

1 1 3 2

1

2 3 1

3 2 1

2 2 2 2
cos( ) sin( ) sin( ) sin( )

2 2 2 2
sin( ) cos( ) sin( ) sin( )

2 2 2 2
sin( ) sin( ) cos( ) sin( )

2 2 2
sin( ) sin( ) sin( ) cos(

n

u u u
n n n n

u u u
n n n n

A

u u u
n n n n

u u u
n n n

       
  

       
 

       
 

      

   
  

   



   

 

   


.

2
)

n



 
 
 
 
 
 
 
 
 
 
 

 

 Similarly, for 1k n  , we obtain the n-th root. 

 

 Some relations between the powers of matrices associated with a 

generalized quaternion is sketched in the following Theorem. 

 

 Theorem (Teorem) 7: Let q  be a unit generalized quaternion with 

the polar form cos sin .q u    And let 2
Z {1}m





    and the matrix 

A  correspond to .q Then (mod )n p m is true if and only if .n pA A  

Proof: The proof follows easily from the induction on n. 

 

 Example (Örnek) 2:  

Let 1 1 1 1 1 2 1 1 1 1 2
( , , ) cos ( , , ).sin

2 2 3 33
q

 

     
     be a unit 

generalized quarternion. The matrix corresponding to this 

quaternion is  
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1

2 2 2 2

1 1

2 22 2
,

1 1

2 22 2

1 1 1 1

22 2 2

A

 

 

 

 

 

  

 
    

 
 

  
 

  
  
 
 
  
 
 

 

 The square roots of the matrix A can be calculated as follows: 

1 2 3

1 1 1 2

2

2 3 1

2 2 / 3 2 2 / 3 2 2 / 3 2 2 / 3
cos( ) sin( ) sin( ) sin( )

2 2 2 2

2 2 / 3 2 2 / 3 2 2 / 3 2 2 / 3
sin( ) cos( ) sin( ) sin( )

2 2 2 2

2 2 / 3 2 2 / 3 2 2 / 3 2 2
sin( ) sin( ) cos( ) sin(

2 2 2

k

k k k k
u u u

k k k k
u u u

A
k k k k

u u u

       
  

       
 

       
 

   
  

   



   



3 2 1

/ 3
)

2

2 2 / 3 2 2 / 3 2 2 / 3 2 2 / 3
sin( ) sin( ) sin( ) cos( )

2 2 2 2

k k k k
u u u

       

 
 
 
 
 
 
 
 
    

 
 

 

 The first root for 0k   is  

1

2
0

1

2 2 2 2

1 1

2 22 2
,

1 1

2 22 2

1 1 1 1

22 2 2

A

 

 

 

 

 

  

 
   

 
 

 
 

  
 
 
 
 
 
 

 

 and the second one for  1k   is 

1

2
1

1

2 2 2 2

1 1

2 22 2
.

1 1

2 22 2

1 1 1 1

22 2 2

A

 

 

 

 

 

  

 
 

 
 
   

 
  
   
 
 
   
 
 

 

 Also, it is easy to see that 

1 1

2 2
0 1 0.A A   

 From the Theorem 7, with 2
3

2
3

m



  , we get 

4 7 10

2 5 8 11

3 6 9 12

4

...

...

... .

A A A A

A A A A

A A A A I
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 Case (Durum) 2: Let   be a positive number and  be a negative 

number. In this case, the Theorems 6 holds. 

 

In following Theorem, we show how unit quaternions can be used to 

described the rotation in 4-space 4E .  
 

 Theorem (Teorem) 8: Let q be a unit generalized quaternion. 

Matrices generated by operators 

+

H  and H


are quasi-orthogonal 

matrices, i.e. 

i) ( ) ( ) ,

T

H q H q 
  

  
 

ii) 

1 0 0 0

0 0 0
( ) ( ) , .

0 0 0

0 0 0


  





 

 
 

        
 
 

T

H q H q
 

 Corollary (Sonuç) 1: Let cos sinq u   be a unit generalized 

quaternion. Then the generalized Hamilton operators
+

qh and 
qh


represent rotations of x  in 4E .
 

The angle of rotation (using
+

qh ) is easily determined. This is the 

angle   between x  and qx :  

( ( ))
cos

( ( )) ( )
( ) cos .

x qx

x q q

S x qx

N N

S x xq S q
S q

N N N







   

 

Therefore that the angle of rotation  is the angle of .q  

 Example (Örnek) 3: Let 1 1 1 1
( , ,0)

22
q

 
   be a unit generalized 

quaternion and , 0.    The matrix corresponding to this 

quaternion is  

2 0

1
2 0

1
.1

0 22

1 1
0 2

A

 







 

  
 
 
 
 

  
 
 
 

 
 

 

 A is a quasi-orthogonal matrix and therefore it represents a 

rotation in 4 -space 4E .
 

 

http://en.wikipedia.org/wiki/Mathematics
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 In following, we show how matrices corresponding to generalized 

quaternion can be used to described the homothetic motion 4-space 4E .  
Let us consider the following curve: 

4: R Ea I    

 defined by  0 1 2 3( ) ( ), ( ), ( ), ( )a t a t a t a t a t for every .t I  

 We suppose that the unit velocity curve ( )a t is differentiable 

regular curve of order .r The operator B called the Hamiltonian operator, 

corresponding to ( )a t is defined by the following matrix; 

 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) .

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a t a t a t a t

a t a t a t a t
B H a t

a t a t a t a t

a t a t a t a t

  

 

 



   
 


  
 
 

 

 

 Definition (Tanım) 9. The 1-parameter Hamilton motions of a body 

in 4E
 are generated by transformation 

1 0 1 1

Y B C X     
     

     

 

 or equivalently 

.Y BX C  (4) 

 Here  ( )B H a t


 and ,Y X and C are 1n   real matrices. Y and X

correspond to the position vectors of the same point P. 

 

 Theorem (Teorem) 9: The Hamilton motion determined by equation 

(4) is a homothetic motion in
4E .

 

 Proof: We suppose that length of ( )a t is not zero, so the matrix 

B can be represented as 

0 31 2

0 31 2

3 02 1

3 02 1

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

a t a ta t a t

h h h h

a t a ta t a t

h h h h
B h

a t a ta t a t

h h h h

a t a ta t a t

h h h h

 

 

 

 
   

 
 
 

  
 
 
 
 
 

 

 where : R R,h I    

2 2 2 2

0 1 2 3( ) ( ) ( ) ( ) ( ) ( ).t h t t a t a t a t a t         . 

 So, we find 
TA A  anddet 1A  , thus B is a homothetic matrix and 

equation (4) determines a homothetic motion. For detailed information 

about the homothetic motions; we refer the reader to [2]. 
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4. CONCLUSION (SONUÇ) 
 With the aid of the Hamilton operators, generalized quaternions 

have been expressed in terms of 4×4 matrices. In this paper, algebraic 

properties and geometric applications of these matrices in generalized 

4-space 
4E

 are studied. Also, it is shown that the set of these 

matrices with the group operation of matrix multiplication is a Lie 

group of 6-dimension and its Lie algebra is found. 
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