
 
 
 
 
 
 
 
 
 
 
 
 
 

NEW MULTIPLE SOLUTION TO THE SHALLOW WATER WAVE EQUATION 
 

ABSTRACT 
In this paper by considering an improved tanh function method, 

we found some exact solution of Shallow Water Wave equation. The main 
idea of this method is to take full advantage of the Riccati equation 
which has more new solutions. 

Keywords: Tanh Function Method, Riccati Equation,  
          Shallow Water Wave Equation. 

 
SHALLOW WATER WAVE DENKLEMİ İÇİN YENİ ÇOK YÖNLÜ ÇÖZÜM 

 
ÖZET 
Bu çalışmada, geliştirilmiş tanh metodu göz önüne alınarak 

Shallow Water Wave denkleminin bazı kesin sonuçları elde edilmiştir. 
Metodun temel amacı Riccati denkleminin bütün avantajlarını kullanarak 
daha yeni çözümler elde etmektir. 

Anahtar Kelimeler: Tanh Fonksiyon Metodu, Riccati Denklemi, 
                   Shallow Water Wave Denklemi 
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1. INTRODUCTION (GİRİŞ) 

    In recent years, nonlinear phenomena play a crucial role in 
applied mathematics and physics. Directly searching for exact 
solutions of nonlinear partial differential equations (PDEs) has 
become more and more attractive partly due to the availability of 
computer symbolic systems like mathematica or maple that allow us to 
perform some complicated and tedious algebraic calculation on a 
computer as well as helping us to find exact solutions of PDEs [1, 2, 
3 4 and 5] now.  
    Many explicit exact methods have been introduced in literature 
[6, 7, 8, 9, 10, 11, 12, 13, 14 and 15]. Some of them are Painleve 
method, homogeneous balance method, similarity reduction method, sine-
cosine method, Darboux transformation, Cole-Hopf transformation, 
Generalized Miura transformation, tanh method, Backlund transformation 
and others methods [16 and 17]. 
    One of the most effectively straightforward method constructing 
exact solution of PDEs is the extended tanh function method [18]. Let 
us simply describe the tanh function. For doing this, one can consider 
in two variables general form of nonlinear PDE 
 

H(u, utt, ux, uxx,…)=0                         (1.1) 
 
and transform Equation (1.1) with  
 
u(x,t)=u(ξ),     ξ=k(x-λt) 
 

where, k and λ are the wave number and wave speed respectively. After 
the transformation, we get a nonlinear ODE for u(ξ)  

 
H′ (u′,u″,u″′,…)=0                           (1.2) 
 
The fact that the solutions of many nonlinear equations can be 

expressed as a finite series of tanh functions motivates us to seek 
for the solutions of Eq. (1.2) in the form  

 
u(x,t)= u(ξ)=∑aitanhi (ξ)=∑aiFi                   (1.3)  
                                     

where Fi=tanhi(ξ), an equation for F(ξ) is obtained. m is a positive 
integer that can be determined by balancing the linear term of highest 
order with the nonlinear term in Eq.(1.1) and k, λ, a1,a2,…am are 
parameters to be determined. 
    Substituting solution (1.3) into Eq.(2.1) yields a set of 
algebraic equations for Fi, then all coefficients of Fi have to vanish. 
From these relations k, λ, a1,a2,…am  can be determined. 
     In this work, we will consider to solve Shallow Water Wave 
equation by using the improved tanh function method which is 
introduced by Chen and Zhang [19 and 20]. 
 

2. METHOD AND ITS APPLICATIONS (YÖNTEM VE UYGULAMALARI) 
    The main idea of this method is to take full advantage of the 
Riccati equation that tanh function satisfies and uses its solutions F 
to replace tanhξ. The required Riccati equation is given as 
 

F′=A+BF+CF2                              (2.1) 
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where F=dF/dξ and A,B,C are constant. In the following, Chen and Zhang 
[19] have given several cases to get solution of Eq(2.1) in the form 
of finite series of tanh functions (1.3). 
 
    Case 1. If C=0, B≠0, then (2.1) has the solutions (exp(Bξ)-A)/B 
 
    Case 2. If A=1/2, B=0, C=-1/2, then (2.1) has the solutions 
              cothξ±cschξ, tanhξ±isechξ (i²=-1) 
 
    Case 3. If A=C=±1/2, B=0, then (2.1) has the solutions secξ±tanξ, 
              cscξ±cotξ. 
 
    Case 4. If A=1, B=0, C=-1, then (2.1) has the solutions tanhξ,  
              cothξ. 
 
    Case 5. If A=C=1, B=0, then (2.1) has the solutions tanξ. 
 
    Case 6. A=C=-1, B=0, then (2.1) has the solutions cotξ. 
 
    Case 7. A=B=0, C≠0, then (2.1) has the solutions -1/(cξ+c0). 
 
     We illustrate the method by considering the Shallow Water Wawe 
equation. 
     

3. EXAMPLE (ÖRNEK) 
Shallow Water Wave equation 

 
uxxt+aux uxt+B utuxx- uxt- uxx=0                 (3.0) 
 

    If we accept that α=-1, β=-1, m=2 we conclude (3.1) equation by 
(3.0) equation 
 

Uxxxt-uxuxt-utuxx-uxt-uxx=0                       (3.1) 
 

for doing this example. We could use transformation with Eq.(1.1) for 
the equation. Let us Shallow Water Wawe consider equation solutions 
 

u(x,t)=u(ξ), ξ=kx-kwt                          (3.2) 
 

   Substituting (3.2) into (3.1), we get 
  

-k4wu(4)-αk3wu′u″-k3wβu′u″+k2wu″-k2u″=0             (3.3) 
-k4wu(4)+2k3wu′u″+ k2wu″-k2u″=0 
 

an integrating (3.3) following equation and when we assume that 
integration constant is zero 
 

-k2wu(4)+2kwu′u″+ wu″-u″=0                  (3.4) 
-k2wu″′+2k3w(u′)2+ wu′-u′=0 
 

when balancing (u.u′) with (u″′) then gives m=2. Therefore, we may 
choose 

u=a0+a1F.                              (3.5) 
 

    Substituting (3.5) into (3.4) along with Eq(2.1) and using 
Mathematica yields a system of equations w,t,FM. Setting the 
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coefficients of FM in the obtained system of equations to zero. We can 
deduce the following set of algebraic polynomials with the respect 
unknowns a0, a1, a2 namely. 
 

u′=a1A+a1BF+a1CF2 
u″=a1AB+a1B2F+2a1ACF+3a1BCF2+2a1C2F3 
u″′=a1B2(A+BF+CF2)+2a1AC(A+BF+CF2)+6a1BCF(A+BF+CF2)+6a1C2F2(A+BF+CF2) 
u″′=a1AB2+a1B3F+7a1B2CF2+2a1A2C+8a1ABCF+8a1AC2F2+12a1BC2F3+6a1C3F4 

and 
F0:-k2wa1A2B-2k2wa1A2C-a1A+kwa12A2+a1wA=0 
F1:-k2wa1B3-8k2wa1ABC+a1wB-a1B+2kwa12AB=0 
F2:-7k2wa1B2C-8k2wa1AC2+a1wC-a1C+2kwa12AC+kwa1B2=0          (3.6) 
F3:-12k2wa1BC2+2kwa1BC=0 
F4:-6k2a1C3+kwa12C2=0 

From the solutions of the system, we can find 
 
a0=0, a1=6kC 
w=1/(4k2AC+1) 

 
with the aid of Mathematica, we find 

• When we choose A=1, B=0, C=1 in Eq(3.6) then 
a0=0, a1=6k, w=1/(4k2+1) 
Therefore, the solution can be found as 
 
u(x,t)=6k tan[k(x-(t/4k2+1))] 
 
In the case, if we choose A=-1, B=0, C=-1 in Eq(3.6) then 
a0=0, a1=-6k,  w=1/(4k2+1) 
 
u(x,t)=-6k cot[k(x-(t/(4k2+1))] 
 
• Again, when we choose A=1, B=0, C=-1 then from the Eq(3.6) 
a0=0, a1=-6k, w=1/(-4k2+1) 
 
u(x,t)=-6k tanh[k(x-(t/-4k2+1))] 
u(x,t)=-6k coth[k(x-(t/-4k2+1))] 
 
• When we choose A=1/2, B=0, C=1/2 then we can find the 

coefficients of Eq(3.6) as 
a0=0, a1=3k, w=1/(k2+1) 
and using the coefficients, the solutions can be found as 
 
u(x,t)=3k[sec[k(x-(t/k2+1))]]+tan[k(x-(t/k2+1))]] 
 
u(x,t)=3k[csc[k(x-(t/k2+1))]+cot[k(x-(t/k2+1))]] 
 
• When we choose A=-1/2, B=0, C=-1/2 then we can find the 

coefficients of Eq(3.6) 
a0=0, a1=-3k, w=1/(k2+1) 
 
u(x, t)=-3k[sec[k(x-(t/k2+1))]-tan[k(x-(t/k2+1))]]  
 
• When we choose A=1/2, B=0, C=-1/2 then we can find the 

coefficients of Eq(3.6) 
a0=0, a1=-3k, w=1/(-k2+1) 
u(x,t)=-3k[coth[k(x+(t/k2+1))]±csch[k(x+(t/k2+1))]] 
u(x,t)=-3k[tanh[k(x+(t/k2+1))] ±i.sech[k(x+(t/k2+1))]] 
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4. CONCLUSION (SONUÇ) 
We have presented a generalized tanh function method and used it 

to solve the Shallow Water Wave equation. In fact this method is 
readily applicable to a large variety of nonlinear PDEs. 

Firstly, all the nonlinear PDEs whish can be solved by other 
tanh function method can be solved easily by this method. Secondly we 
have used only the special solutions of Eq(2.1). If we use only the 
special solutions of Eq(2.1), we can obtain more solutions. We are 
also aware of the fact that not all fundamental equations can be 
treated with the method.  

We also obtain some new and more general solutions at same time. 
Furthermore, this method is also computerizable, which allows us to 
perform complicated and tedious algebraic calculation on a computer. 
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