• icon+90(535) 849 84 68
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

  • Article Code : FIRAT-AKADEMI-12745-5727
  • Article Type : Araştırma Makalesi
  • Publication Number : 2A0205
  • Page Number : 52-59
  • Doi : 10.12739/NWSA.2025.20.2.2A0205
  • Abstract Reading : 94
  • Download : 12
  • Atıf Sayısı : 0
  • Share :

  • PDF Download

Issue Details

  • Year : 2025
  • Volume : 20
  • Issue : 2
  • Number of Articles Published : 2
  • Published Date : 1.04.2025

Cover Download Context Page Download
Technological Applied Sciences

Serial Number : 2A
ISSN No. : 1308-7223
Release Interval (in a Year) : 4 Issues

AYÇİÇEĞİ KÜSPESİNİN PARÇACIK BOYUTUNUN PİROLİZ ÜRÜN VERİMİNE ETKİSİ

İkbal Ay Keçeli1 , Bahattin Aydınlı2

Yapılan çalışmada, biyokütle olarak kullanılan ayçiçeği küspesinin elenmesi sonucunda elde edilen farklı boyutlardaki örneklerin 450°C sabit sıcaklıkta gerçekleştirilen geleneksel piroliziyle elde edilen katı, sıvı ve gaz ürünlerinin verimlerinde parçacık boyutunun etkisi incelenmiştir. Altı farklı boyutta hazırlanan numuneler (150µm den 1.18mm’ye kadar) 450°C’de pirolize edilmiştir. Piroliz sonucunda, parçacık boyutunun ürün dağılımı üzerinde önemli bir rol oynadığı gözlemlenmiştir. Sonuçlar; orta boyutlu (600µm) örneklerde en yüksek biyokömür veriminin (%31.5), en küçük boyutlu numunede (A-150µm) %48 ile en yüksek sıvı ürün veriminin ve en büyük parçacıkta (1.18mm) ise %31.5 ile en yüksek gaz veriminin olduğunu göstermiştir. Bu bulgular, parçacık boyutunun ısı transferi ve tepkime kinetiğine etkisi olduğunu ortaya koymaktadır. Ayçiçeği küspesi gibi endüstriyel tarımsal atıkların enerjiye dönüştürülmesi açısından optimum parçacık boyutunun seçilmesi süreç verimliliğinin ve ürün kalitesinin artmasına sebep olacaktır. Ayrıca, çalışmada atıklardan elde edilen biyokütle kaynaklarının enerjiye kazandırılmasıyla birlikte karbon içeriği yüksek ürünlere dönüştürülerek sürdürülebilir üretim açısından önemli bir katkı oluşturacaktır.

Keywords
Biyokütle, Piroliz, Biyokömür, Biyoyağ, Biyogaz,

EFFECT OF PARTICLE SIZE OF SUNFLOWER MEAL ON PYROYSIS PRODUCT YIELD

İkbal Ay Keçeli1 , Bahattin Aydınlı2

In this study, the effect of particle size on the yields of solid, liquid, and gas products obtained by conventional pyrolysis of different-sized samples obtained as a result of sieving sunflower meal used as biomass at a constant temperature of 450°C was investigated. Samples prepared in six different sizes (from 1.18mm to 150µm) were pyrolyzed at 450°C. As a result of pyrolysis, it was observed that particle size played an important role on the product distribution. The results showed that the highest biochar yield (31.5%) was in the medium-sized (600µm) samples, the highest liquid product yield was 48% in the smallest sized sample (A-150µm) and the highest gas yield was 31.5% in the largest particle (1.18mm). These findings concluded that particle size affects heat transfer and reaction kinetics. Selecting the optimum particle size for the conversion of industrial agricultural wastes such as sunflower meal into energy will increase process efficiency and product quality. In addition, the study will make an important contribution to sustainable production by converting biomass resources obtained from waste into energy and into products with high carbon content.

Keywords
Biomass, Pyrolysis, Biochar, Biooil, Biogas,

Details
   

Authors

İkbal Ay Keçeli (1) (Corresponding Author)

Çankırı Karatekin Üniversitesi
iay@karatekin.edu.tr | 0000-0002-1125-7552

Bahattin Aydınlı (2)

baydinli@kastamonu.edu.tr | 0000-0002-6525-4162

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Demirbaş, A., (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

[2] Mohan, D., Pittman, C.U., and Steele, P.H., (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3), 848–889. https://doi.org/10.1021/ef0502397.

[3] Aguilar, G., Muley, P.D., Henkel, C., and Boldor, D., (2015). Effects of biomass particle size on yield and composition of pyrolysis bio-oil. AIMS Energy, 3(4):838–850. https://doi.org/10.3934/energy.2015.4.838

[4] Sarıoğlu, S. ve Aktaş, T., (2024). Ayçiçeği Küspesinin Katalizörlü ve Katalizörsüz Koşullarda Hızlı Pirolizinin Ürün Verimleri ve Özelliklerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 21(1):1-14.

[5] Bridgwater, A.V., (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

[6] Tripathi, M., Sahu, J.N., and Ganesan, P., (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122

[7] Zhou, H., Li, X., Liu, Q., and Zhang, Z., (2023). Fast pyrolysis of Paulownia wood: Influence of particle size on product yield and characteristics. Energies, 16(3):1104.

[8] Mohan, D., Pittman, C.U., and Steele, P.H., (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20(3): 848–889. https://doi.org/10.1021/ef0502397.

[9] Kowalewski, K., Gašparovic, M., and Duic, N., (2023). Influence of particle size on the pyrolysis of various biomass types: A kinetic and thermodynamic analysis. Processes, 11(10):2735. https://doi.org/10.3390/pr11102735

[10] Zhang, Y., He, M., and Li, S., (2023). Experimental and modeling investigation of particle size effect in biomass pyrolysis. Energy Conversion and Management, 283, 116935. https://doi.org/10.1016/j.enconman.2023.116935

[11] Kumar, B.K. and Goyal, H., (2024). Impact of particle-scale models on CFD–DEM simulations of biomass pyrolysis. Reaction Chemistry & Engineering, 9, 2552–2568. https://doi.org/10.1039/D4RE00086B

[12] Çağlar, A. and Demirbaş, A., (2002). Hydrogen rich gas mixture from olive husk via pyrolysis. Energy Conversion and Management, 43(1):109-117.

[13] Caglar, A. and Aydinli, B., (2009). Isothermal co-pyrolysis of hazelnut shell and ultra-high molecular weight polyethylene: The effect of temperature and composition on the amount of pyrolysis products. Journal of Analytical and Applied Pyrolysis, 86(2):304-309.

[14] Wu, K., Lin, Y., and Zuo, Y., (2023). Pyrolysis characteristics of biomass under varying particle sizes. Journal of Analytical and Applied Pyrolysis, 173:105701. https://doi.org/10.1016/j.jaap.2023.105701

[15] Hou, X., Li, Z., and Zhang, Z., (2021). Selectively producing acetic acid via boric acid-catalyzed fast pyrolysis of woody biomass. Catalysts, 11(4):494.

[16] Di Blasi, C., Branca, C., and Galgano, A., (2007). Flame retarding of wood by impregnation with boric acid–pyrolysis products and char oxidation rates. Polymer Degradation and Stability, 92(5):752-764.