• icon+90(535) 849 84 68
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

Issue Details

  • Year : 2025
  • Volume : 20
  • Issue : 1
  • Number of Articles Published : 2
  • Published Date : 1.01.2025

Cover Download Context Page Download
Technological Applied Sciences

Serial Number : 2A
ISSN No. : 1308-7223
Release Interval (in a Year) : 4 Issues

METALİK MALZEMELERİN SÜRTÜNME KARIŞTIRMA NOKTA KAYNAĞI İLE BİRLEŞTİRİLMESİ

İhsan KIRIK 1 , ANIL İMAK2 , Musa KILIÇ 3

Teknolojik, endüstriyel, savunma sanayi ve uçak endüstrisindeki hızlı gelişmeyle birlikte farklı türdeki malzemelerin birlikte kullanımı ve bu malzemelerin birleştirilmesi çok önemli hale gelmiştir. Geleneksel ark kaynak yöntemleriyle farklı türdeki malzemelerin birleştirilmesinde çeşitli sorunlar ortaya çıkabilmektedir. Farklı malzemelerin birleştirilmesindeki olumsuzlukları azaltmak ve daha uygun kaynak yöntemini uygulamak için sürtünme kaynağı, sürtünme karıştırma kaynağı ve sürtünme karıştırma nokta kaynağı teknikleri kullanılabilmektedir. Böylece ergitme kaynak yöntemlerindeki olumsuzluklar azaltılmış olmaktadır. Sürtünme karıştırma nokta kaynağı son zamanlarda yaygın olarak kullanılan direnç nokta kaynağına alternatif bir yöntem olarak ortaya çıkmış ve sanayi sektörü dışında diğer endüstri kollarında da uygulamada yerini almaya başlamıştır. Birleştirme mekanizmaları ne kadar benzerlik gösterse de aralarında uygulama farklılıkları vardır. Nokta direnç kaynağı ile birleştirilmesi çok zor olan farklı türdeki malzemeler sürtünme karıştırma nokta kaynağı ile daha kolay birleştirilebilir.

Keywords
Metalik Malzemeler, Sürtünme Karıştırma Nokta Kaynağı, Sürtünme Kaynağı, Sürtünme Karıştırma Kaynağı, Kaynak,

JOINING OF METALLIC MATERIALS BY FRICTION STIR SPOT WELDING

İhsan KIRIK 1 , ANIL İMAK2 , Musa KILIÇ 3

With the rapid development in technology, industry, defense industry, and the aviation industry, the use of different types of materials together and the joining of these materials has become very important. Various problems may arise in joining different types of materials using traditional arc welding methods. To reduce the drawbacks in joining different materials and to apply a more suitable welding method, techniques such as friction welding, friction stir welding, and friction stir spot welding can be used. This way, the drawbacks of fusion welding methods are minimized. Friction stir spot welding has recently emerged as an alternative to the widely used resistance spot welding and has started to be applied in industries outside the industrial sector as well. Although the joining mechanisms are quite similar, there are differences in their applications. Materials that are very difficult to join with resistance spot welding can be more easily joined using friction stir spot welding.

Keywords
Metal Materials, Friction Stir Spot Welding, Friction Welding, Friction Stir Welding, Welding ,

Details
   

Authors

İhsan KIRIK (1)

BİNGÖL ÜNİVERSİTESİ
alihsankirik@gmail.com | 0000-0002-8361-319X

ANIL İMAK (2) (Corresponding Author)

Bingöl Üniversitesi
aimak@bingol.edu.tr | 0000-0001-6091-1584

Musa KILIÇ (3)

Batman Üniversitesi
musa.kilic@batman.edu.tr | 0000-0001-5808-6917

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] Prasa, K.S. and Gupta, A., (2014). A constitutive description to predict high-temperature flow stress in austenitic stainless steel 316. Procedia materials science, 6:347–353.

[2] Zhang, C. and Shirzadi, A.A., (2018). Measurement of residual stresses in dissimilar friction stir-welded aluminium and copper plates using the contour method. Science and Technology of Welding and Joining, 23(5):394–399.

[3] Shankar, S., Saw, K., Chattopadhyaya, S., and Hloch, S., (2018). Investigation on different type of defects, temperature variation and mechanical properties of friction stir welded lap joint of aluminum alloy 6101-T6. Materials Today: Proceedings, 5(11):24378–24386.

[4] Shankar, S. and Chattopadhyaya, S., (2020). Friction stir welding of commercially pure copper and 1050 aluminum alloys. Materials Today: Proceedings, 25:664– 667.

[5] Murugan, R. and Thirumalaisamy, N.,(2018). Experimental and numerical analysis of friction stir welded dissimilar copper and bronze plates. Materials Today: Proceedings, 5(1):803–809.

[6] Badarinarayan, H., Hunt, F., and Okamoto, K. (2007). Friction Stir Welding and Processing. 235-250 Amerika.

[7] Şık, A., (2011). Sürtünme karıştırma kaynağı ile birleştirilen magnezyum levhaların mekanik özelliklerinin incelenmesi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 14(2):134-140.

[8] Kilic, M., Kirik, I., Celik, F., and Orhan, N., (2012). The effect of plasma arc process parameters on the properties of dissimilar AISI 1040/ AISI 304 steel plate welds. Materials Testing, 54(10):674–678.

[9] Ananthapadmanaban, D., Rao, V.S., Nikhil, A., and Rao, K.P., (2009). A study of mechanical properties of friction welded mild steel to stainless steel joints. Materials & Design, 30:2642–2646.

[10] Kirik, I. and Abak, D., (2022). Friction welding of AISI 1020 with Ramor 500 steel: microstructure, tensile and fatigue strength. Technological Applied Science, 17(1):39–52.

[11] Kirik, I., Ozdemir, N., Gulumser, M., and Balalan, Z., (2016). Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding. Materials Testing, 58(9):717–724.

[12] Arivazhagan, N., Surendra, S., Satya, P., and Reddy, G.M., (2006). High temperature corrosion studies on friction-welded dissimilar metals. Materials Science and Engineering: B, 132:222–227.

[13] Ates, A., Turker, M., and Kurt, A., (2007). Effect of friction pressure on the properties of friction welded MA956 iron-based superalloy. Materials & Design, 28:948–953.

[14] Sarsilmaz, F., Kirik, I., and Ozdemir, N., (2018). Microstructure and mechanical properties of friction welded AISI 1040/AISI 304L steels before and after electrochemical corrosion. Materials Testing, 60(1):49–54.

[15] Kirik, I., Ozdemir, N., and Sarsilmaz, F., (2012). Microstructure and mechanical behavior of friction welded AISI 2205/AISI 1040 steel joints. Materials Testing, 54(10):683–687.

[16] Bolshokov, M.V., (1972). The vacuum friction welding of high-melting and high-temperature alloys. Automatic Welding, 25(6):60–62.

[17] Bilici, M.K., Yükler, A.İ., and Kurtulmus M., (2011). The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Materials & Design,32(7):4074–4079.

[18] Changbin, S., Zhang, J., and Ge, J., (2011). Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld. Journal of Environmental Sciences, 23:32–35.

[19] Karlsson, L., Berqvist, E.L., and Larsson, H., (2002). Application of friction stir welding to dissimilar welding. Welding World, 46:10–14.

[20] Celikyurek, I., Torun, O., and Baksan, B., (2011). Microstructure and strength of friction welded Fe-28Al and 316L stainless steel Materials Science and Engineering: A, 528:8530–8536.

[21] Kirik, I. and Ozdemir, N., (2012). The design of friction welding machine used in automotive industry and weldability of AISI1040/ AISI304l couples by using frictional energy. Technological Applied Science, 7:60–74.

[22] Teker, T. and Karakurt, E.M., (2021). Friction welding of high Cr white cast iron to AISI 1030 steel with Ni interlayer. Materials Testing, 63(11):1012–1017.

[23] Mitelea, I. and Craciunescu, C.M., (2011). Investigations on joining surface hardened steels by friction welding. Materials Testing, 53(1–2):19–25.

[24] Ozdemir, N. and Orhan, N., (2005). Microstructure and mechanical properties of friction welded joints of a fine-grained hypereutectoid steel with 4% Al. Journal of Materials Processing Technology, 166:63–70.

[25] Li, X., Li, J., and Jin, F., (2018). Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Welding in the World, 62:923–930.

[26] Murugan, S., Haq, N., and Sathiya, P., (2020). Effect of welding parameters on the microstructure and mechanical properties of the frictionwelded dissimilar joints of AA6063 alloy and faying surfacetapered AISI304L alloy. Welding in the World, 64:483–499.

[27] Kirik, I., and Ozdemir, N., (2012). Design and manufacture of PLC controlled continuous drive friction welding machine. International Conferance Welding Technolology, Ankara, Turkey, 23–25.

[28] Ozdemir, N., (2005). Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed. Materials Letters, 59:2504–2509.

[29] Jeyaprakash, N., Yang, C.H., Susila, P., and Karuppasamy, S.S., (2023). Laser cladding of NiCrMoFeNbTa particles on Inconel 625 alloy: Microstructure and corrosion resistance. Transactions of the Indian Institute of Metals, 76(2):599–612.

[30] Su, P., Gerlich, A., North, T.H., and Bendzsak, G.J., (2006). Energy utilisation and generation during fric tion stir spot welding. Science and Technology of Welding and Joining, 11(2):163–169.

[31] Imak, A., Kirik, I., and Cetkin, E., (2020). Sürtünme karıştırma saplama kaynak metodu ile birleştirilen AISI 5140 çeliği ile AISI 316 paslanmaz çeliğin mikroyapısal özelliklerinin belirlenmesi. Bingol University Journal of Technical Science, 1(1):41-48.

[32] Feng, Z., Diamond, S., Santella, M.L., Pan, T.Y., and Li, N., (2004). High strength weight reduction materials-friction stir welding and processing of advanced materials, Oak Ridge National Laboratory Report DE-AC05-00OR22725, 101-108.

[33] Mitlin, D., Radmilovic, V., Pan, T., Chean, J., Feng, Z., and Santella, M.L., (2006). Structure properties relations in spot friction welded (also known as friction stir spot welding) 6111 aluminum, Materials Science and Engineering, 441:79-96.

[34] Mert, S. and Mert, S., (2013). Sürtünme karıştırma nokta kaynak yönteminin incelenmesi. İleri Teknoloji Bilimleri Dergisi, 2(1):26-35.

[35] Mubiayi, M.P., Akinlabi, E.T., Makhatha, M.E., Current Trends in Friction Stir Welding (FSW) and Friction Stir Spot Welding (FSSW) 978-3-319-92750-3 (eBook).

[36] Lienert, T.J., Stellwag Jr, W.L., Grimmett, B.B., and Warke, R.W., (2003). Friction stir welding studies on mild steel. Welding Research American Welding Society and The Welding Research Council.

[37] Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., and Dawe,s C.J., (1991). Friction stir butt welding. International Patent No. PCT/GB92/02203, GB patent application No. 9125978.8.

[38] Mahmat, A., (2024). Investigation of the effect of electrophoresis-assisted milling on machinability.Engineering Science and Technology, an International Journal, 59:101875.

[39] Tosun, N., Rasul, S.Y., Mahmat, A., and Tosun, G., (2024). Enhancing milling performance of 6061 aluminum alloy with nanocutting fluid and MQL. Surface Review and Letters, 31(07): 2450058.

[40] Agar, S., Tosun, N., and Mahmat, A., (2024). Effects of Vibration Conditions on Machinability of Aisi 52100 Bearing Steel. Surface Review and Letters, 31(02): 2450012.

[41] Bagheri, B., Alizadeh, M., Mirsalehi, S.E., Shamsipur, A., and Abdollahzadeh, A., (2022). The effect of rotational speed and dwell time on Al/SiC/Cu composite made by friction stir spot welding. Welding in the World, 66(11):2333–2350.

[42] Arici, A. and Mert, Ş., (2008). Friction stir spot welding of polypropylene. Journal of Reinforced Plastics and Composites, 27(18):2001–2004.

[43] Freeney, T.A., Sharma, S.R., and Mishra, R.S., (2006). Effect of welding parameters on properties of 5052 Al friction stir spot welds. SAE Technical Paper, No. 2006-01-0969.

[44] Bilici, M.K. and Yükler, A.I., (2012). Influence of tool geometry and process parameters on macro structure and static strength in friction stir spot welded polyethylene sheets. Materials & Design, 33:145–152.

[45] Hirasawa, S., Badarinarayan, H., Okamoto, K., Tomimura, T., and Kawanami, T., (2010). Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. Journal of Materials Processing Technology, 210(11):1455–63.

[46] Badarinarayan, H., Shi, Y., Li, X., and Okamoto, K., (2009). Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754 O sheets. International Journal of Machine Tools and Manufacture, 49(11):814–823.

[47] Jeyaprakash, N., Yang, C.H., Karuppasamy, S.S., and Duraiselvam, M., (2023). Stellite 6 cladding on AISI Type 316L stainless steel: Microstructure, nanohardness and corrosion resistance. Transactions of the Indian Institute of Metals,76(2):491–503.

[48] Badarinarayan, H., Yang, Q., and Zhu, S., (2009). Effect of tool geometry on static strength of fric tion stir spot welded aluminum alloy. International Journal of Machine Tools and Manufacture, 49(2):142–148.

[49] Pathak, N., Bandyopadhyay, K., Sarangi, M., and Panda, S.K., (2013). Microstructure and mechanical performance of friction stir spot welded aluminum 5754 sheets. Journal of Materials Engineering and Performance. 22:131–144.

[50] Lambiase, F., Paoletti, A., and Di Ilio, A., (2017). Effect of tool geometry on mechanical behavior of friction stir spot welds of polycarbonate sheets. The International Journal of Advanced Manufacturing Technology, 88:3005–3016.

[51] Natarajan, J., Savio Lewise, K.A., (2024). Friction stir spot welding, Metallurgical, Mechanical and Tribological Properties, ISBN 9781032558004, Published July 11, 2024 by CRC Press.