• icon+90(533) 652 66 86
  • iconnwsa.akademi@hotmail.com
  • icon Fırat Akademi Samsun-Türkiye

Article Details

Issue Details

  • Year : 2023
  • Volume : 18
  • Issue : 2
  • Number of Articles Published : 4
  • Published Date : 1.04.2023

Cover Download Context Page Download
Ecological Life Sciences

Serial Number : 5A
ISSN No. : 1308-7258
Release Interval (in a Year) : 4 Issues

SU ÜRÜNLERİ YETİŞTİRİCİLİĞİNDE “BİYOREMEDİASYON”

Fatmagün Aydın1

Tarımsal faaliyetler içerisinde yer alan hızla büyüyen su ürünleri yetiştiriciliği sektöründe, artan taleplerin karşılanabilmesi için üretimin yükseltilmesi yönünde çaba sarf edilmektedir. Ancak su ürünleri üretiminden gelen atık su kirletici maddeler içermektedir. Atık suyun çoğunluğunu oluşturan balık dışkısı ve tüketilmeyen yemlerin oluşturduğu kirleticiler, suda askıdaki katı maddeler, azotlu atıklar ve fosfor miktarının artmasına neden olmaktadır. Su ürünleri yetiştiriciliği sistemlerinde genellikle geleneksel atıksu arıtımı kullanılmaktadır. Ancak sucul ekosistemlerin korunması ve su kaynaklarının yeniden kullanımı için sürdürülebilir çözümlere ihtiyaç duyulmaktadır. Biyoremediasyon yöntemi, biyolojik süreci başlatarak kontamine bileşiklerin uzaklaştırılması, azaltılması ve dönüştürülmesini kapsamaktadır. Bu derlemede, su ürünleri yetiştiriciliğinde, su kalitesi yönetiminde, yetiştiricilik sistemlerinden kaynaklanan atıkların ve çamurun arıtılmasında kullanılabilecek biyoremediasyon yöntemleri ele alınmıştır. Ayrıca su ürünleri yetiştiriciliğinde sürdürülebilirlik ve çevresel etkilerin yönetilmesi açısından biyoremediasyonun önemi değerlendirilmiştir.

Keywords
Biyoremediatör, Su Kalitesi, Su Arıtma, Atık Su, Çamur ,

“BIOREMEDIATION” IN AQUACULTURE

Fatmagün Aydın1

Efforts are paid to increase production to meet the high demands in the growing aquaculture sector, which is included in agricultural activities. Here, wastewater from aquaculture production contains pollutants. Fish feces and pollutants formed by unconsumed feeds, that constitute the majority of the wastewater, cause an increase in the amount of suspended solids, nitrogenous wastes and phosphorus in the water. Conventional wastewater treatment is often used in aquaculture systems. However, sustainable solutions are needed for the protection of aquatic ecosystems and the reuse of water resources. The bioremediation method includes the removal, reduction and conversion of contaminated compounds by initiating the biological process. In this review, bioremediation methods that can be used in aquaculture, water quality management, treatment of waste and sludge originating from aquaculture systems are discussed. In addition, the importance of bioremediation in terms of sustainability in aquaculture and managing environmental effects was evaluated.

Keywords
Bioremediator, Water Quality, Water Treatment, Wastewater, Sludge,

Details
   

Authors

Fatmagün Aydın (1) (Corresponding Author)

Çukurova Üniversitesi
faydin@cu.edu.tr | 0000-0001-7852-307X

Supporting Institution

:

Project Number

:

Thanks

:
References
[1] FAO, (2022). The state of world fisheries and aquaculture 2022. towards blue transformation (Rome). https://doi.org/10.4060/cc0461en.

[2] TÜİK, (2022). Türkiye Su Ürünleri İstatistikleri. https://Data.Tuik.Gov.Tr/Kategori/Getkategori?P=Tarim-111&Dil=1 (Erişim Tarihi:09.09.2022).

[3] Yavuzcan, H. and Pulatsü, S., (2022). Sıfır atığa doğru: Su ürünleri yetiştiriciliğinde sürdürülebilir atık yönetim. Ege Journal of Fisheries and Aquatic Sciences, 39(4):341-348. https://doi.org/10.12714/egejfas.39.4.11

[4] Burridge, L., Weis, J.S., Cabello, F., Pizarro, J., and Bostick, K., (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture, 306(1-4):7-23. https://doi.org/10.1016/j.aquaculture.2010.05.020.

[5] Cek, S. and Sarıhan, F., (2010). Endokrin sistemi bozan kimyasallardan cinsiyet steroidlerinin balıklardaki etkileri. Ege Üniversitesi Su Ürünleri Dergisi, 1:41-46. http://www.egejfas.org/tr/pub/issue/4998/67660

[6] Rico, A., Satapornvanit, K., Haque, M.M., Min, J., Nguyen, P.T., Telfer, T.C., and Van Den Brink, P.J., (2012). Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Reviews in Aquaculture, 4(2):75-93. https://doi.org/10.1111/j.1753-5131.2012.01062.x

[7] Dauda, A.B., Ajadi, A., Tola-Fabunmi, A.S., and Akinwole, A.O., (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3):81-88. https://doi.org/10.1016/j.aaf.2018.10.002

[8] Herath, S.S. and Satoh, S., (2015). Environmental impact of phosphorus and nitrogen from aquaculture. In Feed and feeding practices in aquaculture. Woodhead Publishing, pp:369-386. https://doi.org/10.1016/B978-0-08-100506-4.00015

[9] Mahari, W.A.W., Waiho, K., Azwar, E., Fazhan, H., Peng, W., Ishak, S.D., and Lam, S.S., (2022). A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere, 288:132559. https://doi.org/10.1016/j.chemosphere.2021.132559

[10] Godoy-Olmos, S., Jauralde, I., Monge-Ortiz, R., Milián-Sorribes, M.C., Jover-Cerdá, M., Tomás-Vidal, A., and Martínez-Llorens, S., (2022). Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquaculture International, 30(2):581-606. https://doi.org/10.1007/s10499-021-00821-3

[11] Ballestrazzi, R., Lanari, D., D'agaro, E., and Mion, A., (1994). The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax. Aquaculture, 127(2-3):197-206. https://doi.org/10.1016/0044-8486(94)90426-X

[12] Chen, S., Timmons, M.B., Aneshansley, D.J., and Bisogni, J.J., (1993). Suspended solids characteristics from recirculating aquacultural systems and design implications. Aquaculture, 112(2-3):143-155. https://doi.org/10.1016/0044-8486(93)90440-A

[13] Bureau, D.P., (2004). Factors affecting metabolic waste outputs in fish. In: Cruz Suárez, L.E., Ricque Marie, D., Nieto López, M.G., Villarreal, D., Scholz, U., González, M. (Eds.), Avances en Nutrición Acuícola VII. Memorias del VII Symposium Internacional Nutrición Acuícola. 16–19 Noviembre, 2004. Hermosillo, Sonora, Mexico. https://www.uanl.mx/utilerias/nutricion_acuicola/VII/archivos/2DominiqueBureau.pdf.

[14] Jasmin, M.Y., Fadhil Syukria, M.S., and Kamarudina, Karim, M., (2020). Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 519:734905. https://doi.org/10.1016/j.aquaculture.2019.734905

[15] Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., and Diana, J., (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research-International, 14:452-462. https://doi.org/10.1065/espr2007.05.426

[16] Ackefors, H. and Enell, M., (1994). The release of nutrients and organic matter from aquaculture systems in Nordic countries. Journal of applied ichthyology, 10(4):225-241. https://doi.org/10.1111/j.1439-0426.1994.tb00163.x

[17] Suzuki, Y., Maruyama, T., Numata, H., Sato, H., and Asakawa, M., (2003). Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel: towards zero emission. Aquacultural Engineering, 29(3-4):165-182. https://doi.org/10.1016/j.aquaeng.2003.08.001.

[18] Yüksel, D., Çelik, E., and Turgay, Ö., (2021). Siyanobakteri kaynaklı toksin tehlikesi. Ecological Life Sciences, 16(1):1-17. http://dx.doi.org/10.12739/NWSA.2021.16.1.5A0144

[19] McNeary, W.W. and Erickson, L.E., (2013). Sustainable management of algae in eutrophic ecosystems. Journal of Environmental Protection, 4(11A):9. https://doi.org/10.4236/jep.2013.411A002

[20] Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., and Pinay, G., (2019). Eutrophication: a new wine in an old bottle?. Science of the total environment, 651:1-11. https://doi.org/10.1016/j.scitotenv.2018.09.139.

[21] Chávez-Crooker, P. and Obreque-Contreras, J., (2010). Bioremediation of aquaculture wastes. Current opinion in Biotechnology, 21(3):313-317. https://doi.org/10.1016/j.copbio.2010.04.001

[22] Barman, P., Bandyopadhyay, P., Kati, A., Paul, T., Mandal, A.K., Mondal, K.C., and Mohapatra, P.K.D., (2018). Characterization and strain improvement of aerobic denitrifying EPS producing bacterium Bacillus cereus PB88 for shrimp water quality management. Waste and Biomass Valorization, 9:1319-1330. http://dx.doi.org/10.54083/ResBio.2.1.2020.20-25

[23] Phang, S.M., Chu, W.L., and Rabiei, R., (2015). Phycoremediation. The algae world, 357-389. https://doi.org/10.1007/978-94-017-7321-8-13

[24] Shackira, A.M., Jazeel, K., and Puthur, J.T., (2021). Phycoremediation and phytoremediation: Promising tools of green remediation. In Sustainable Environmental Clean-up, Elsevier, pp:273-293. https://doi.org/10.1016/b978-0-12-823828-8.00013-x

[25] Folke, C. and Kautsky, N., (1992). Aquaculture with its environment: prospects for sustainability. Ocean and coastal management, 17(1):5-24. https://doi.org/10.1016/0964-5691(92)90059-T

[26] Azubuike, C.C., Chikere, C.B., and Okpokwasili, G.C., (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal Microbiol Biotechnology, 32(11):180. https://doi.org/10.1007/s11274-016-2137-x

[27] Gadd, G.M., (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 11(3):271-279. https://doi.org/10.1016/S0958-1669(00)00095-1

[28] Svobodová, Z., (1993). Water Quality and Fish Health. FAO, Rome, EIFAC Technical Paper, No:54, pp:67. http://www.nativefishlab.net/library/textpdf/15062.pdf

[29] Astari, B., Budiardi, T., Ismi, S., Effendi, I., and Hadiroseyani, Y., (2023). Increasing the stocking density of grouper nurseries for aquabusiness efficiency in Recirculating Aquaculture System (RAS) with bioremediation. HAYATI Journal of Biosciences, 30(2):198-206. https://doi.org/10.4308/hjb.30.2.198-206

[30] Nakphet, S., Ritchie, R.J., and Kiriratnikom, S., (2017). Aquatic plants for bioremediation in red hybrid tilapia (Oreochromis niloticus× Oreochromis mossambicus) recirculating aquaculture. Aquaculture International, 25:619-633. https://link.springer.com/article/10.1007/s10499-016-0060-7

[31] Crab, R., Kochva, M., Verstraete, W., and Avnimelech, Y., (2009). Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40(3):105-112. http://dx.doi.org/10.1016/j.aquaeng.2008.12.004

[32] Crab, R., Defoirdt, T., Bossier, P., and Verstraete, W., (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356:351-356. http://dx.doi.org/10.1016/j.aquaculture.2012.04.046.

[33] Kaya, D. ve Genç, E.,(2018). Su ürünleri yetiştiriciliğinde biyoyumak teknolojisi Biofloc technology in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 35(2):219-225. https://doi.org/10.12714/egejfas.2018.35.2.16.

[34] Schock, T.B., Duke, J., Goodson, A., Weldon, D., Brunson, J., Leffler, J.W., and Bearden, D.W., (2013). Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics. PLoS One, 8(3). https://doi.org/10.1371%2Fjournal.pone.0059521

[35] Ahmad, A.L., Chin, J.Y., Harun, M.H.Z.M., and Low, S.C., (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. Journal of Water Process Engineering, 46:102553. http://dx.doi.org/10.1016/j.jwpe.2021.102553

[36] Brito, L.O., Cardoso Junior, L.D.O., Lavander, H.D., Abreu, J.L.D., Severi, W., and Gálvez, A.O., (2018). Bioremediation of shrimp biofloc wastewater using clam, seaweed and fish. Chemistry and Ecology, 34(10):901-913. http://dx.doi.org/10.1080/02757540.2018.1520843.

[37] Ferreira, M.G.P., Melo, F.P., Lima, J.P.V., Andrade, H.A., Severi, W., and Correia, E.S., (2017). Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc. Latin American Journal of Aquatic Research, 45(1):167-176. http://dx.doi.org/10.3856/vol45-issue1-fulltext-16.

[38] Baganz, G.F., Junge, R., Portella, M.C., Goddek, S., Keesman, K.J., Baganz, D., and Kloas, W., (2022). The aquaponic principle—It is all about coupling. Reviews in Aquaculture, 14(1):252-264. https://doi.org/10.1111/raq.12596.

[39] Effendi, H., Utomo, B.A., Darmawangsa, G.M., and Sulaeman, N., (2015). Combination of water spinach (Ipomea aquatica) and bacteria for freshwater cryfish red claw (Cherax quadricarinatus) culture wastewater treatment in aquaponic system. Journal of Advances in Biology and Biotechnology, 6(3). https://doi.org/10.24297/jab.v6i3.6555.

[40] Soltani, M., Ghosh, K., Hoseinifar, S.H., Kumar, V., Lymbery, A.J., Roy, S., and Ringø, E., (2019). Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science and Aquaculture, 27(3):331-379. http://dx.doi.org/10.3856/vol45-issue1-fulltext-16.

[41] Kamilya, D. and Devi, W.M., (2022). Bacillus probiotics and bioremediation: an aquaculture perspective. In Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting, Springer International Publishing, pp:335-347. http://dx.doi.org/10.1007/978-3-030-85465-2-15.

[42] Butt, U.D., Khan, S., Liu, X., Sharma, A., Zhang, X., and Wu, B., (2023). Present status, limitations, and prospects of using Streptomyces bacteria as a potential probiotic agent in aquaculture. Probiotics and Antimicrobial Proteins, 1-17. https://doi.org/10.1007/s12602-023-10053-x

[43] James, G., Das, B.C., Jose, S., and VJ, R.K., (2021). Bacillus as an aquaculture friendly microbe. Aquaculture International, 29:323-353. https://link.springer.com/article/10.1007/s10499-020-00630-0.

[44] Olmos, J., Acosta, M., Mendoza, G., and Pitones, V., (2020). Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of Microbiology, 202:427-435. https://doi.org/10.1007/s00203-019-01757-2.

[45] Anggraini S.I., Arfiati D., and Nursyam H., (2019). Effectiveness of Bacillus subtilis bacteria as a total organic matter reducer in catfish pond (Clarias gariepinus) cultivation. International Journal of Biotech Trends and Technology, 9:7-10. http://dx.doi.org/10.14445/22490183/IJBTT-V9I2P602.

[46] Zokaeifar, H., Babaei, N., Saad, C.R., Kamarudin, M.S., Sijam, K., and Balcazar, J.L., (2014). Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 36(1):68-74. https://doi.org/10.1016/j.fsi.2013.10.007.

[47] Banerjee, S., Khatoon, H., Shariff, M., and Yusoff, F.M., (2010). Enhancement of Penaeus monodon shrimp postlarvae growth and survival without water exchange using marine Bacillus pumilus and periphytic microalgae. Fisheries Science, 76:481-487. http://dx.doi.org/10.1016/j.algal.2023.103062.

[48] Li, X., Wang, T., Fu, B., and Mu, X., (2022). Improvement of aquaculture water quality by mixed Bacillus and its effects on microbial community structure. Environmental Science and Pollution Research, 29(46):69731-69742. https://doi.org/10.1007/ s11356-022-20608-0.

[49] De Oliveira, H.M., Owatari, M.S., Martins, M.A., Lopes, G.R., Ferreira, M.B., Jesus, G.F.A., and Mouriño, J.L.P., (2023). Probiotic BioPlus® PS modulate shrimp-tilapia polyculture pond soil microbiome and exhibit bioremediation potential. Journal of Applied Aquaculture, 1-18. https://doi.org/10.1080/10454438.2023.2185562.

[50] He, X., Abakari, G., Tan, H., Wenchang, L.I.U., and Luo, G., (2023). Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture, 566:739216. http://dx.doi.org/10.1016/j.aquaculture.2022.739216

[51] Huang, H.H., Li, C.Y., Lei, Y.J., Zhou, B.L., Kuang, W.Q., Zou, W.S., and Yang, P.H., (2023). Effects of Bacillus strain added as initial indigenous species into the biofloc system rearing Litopenaeus vannamei juveniles on biofloc preformation, water quality and shrimp growth. Aquaculture, 569:739375. https://doi.org/10.1016/j.aquaculture.2023.739375.

[52] Novriadi, R., Prihadi, T.H., Saragih, H.S.D., Kesselring, J., and Standen, B., (2023). Well-defined multispecies probiotic and enzyme combination outperforms traditional fermented probiotic applications in an intensive Pacific white shrimp, Litopenaeus vannamei (Boone, 1931), culture system. Journal of the World Aquaculture Society, 54(1):156-166. http://dx.doi.org/10.1111/jwas.12935.

[53] Das, S.K., Mondal, B., Sarkar, U.K., Das, B.K., and Borah, S., (2022). Understanding and approaches towards circular bio-economy of wastewater reuse in fisheries and aquaculture in India: An overview. Reviews in Aquaculture. http://dx.doi.org/10.1111/raq.12758.

[54] Lananan, F., Hamid, S.H.A., Din, W.N.S., Khatoon, H., Jusoh, A., and Endut, A., (2014). Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). International Biodeterioration & Biodegradation, 95:127-134. https://doi.org/10.1016/j.ibiod.2014.06.013.

[55] Ni, Z., Wu, X., Li, L., Lv, Z., Zhang, Z., Hao, A., and Li, C., (2018). Pollution control and in situ bioremediation for lake aquaculture using an ecological dam. Journal of Cleaner Production, 172:2256-2265. https://doi.org/10.1016/j.jclepro.2017.11.185.

[56] Zhu, B., Chen, S., Zhao, C., Zhong, W., Zeng, R., and Yang, S., (2019). Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water. Bioresource Technology, 292:121917. https://doi.org/10.1016/j.biortech.2019.121917.

[57] Nicholaus, R., Lukwambe, B., Yang, W., Zhu, J., and Zheng, Z., (2020). In situ assemblies of bacteria and nutrient dynamics in response to an ecosystem engineer, marine clam Scapharca subcrenata, in the sediment of an aquaculture bioremediation system. Journal of Ocean University of China, 19:1447-1460. https://doi.org/10.1007/s11802-020-4464-7.

[58] Ramos-Corella, K., Martínez-Córdova, L.R., Enríquez-Ocaña, L.F., Miranda-Baeza, A., and López-Elías, J.A., (2014). Bio-filtration capacity, oxygen consumption and ammonium excretion of Dosinia ponderosa and Chione gnidia (Veneroida: Veneridae) from areas impacted and non-impacted by shrimp aquaculture effluents. Revista de Biología Tropical, 62(3):969-976. https://pubmed.ncbi.nlm.nih.gov/25412529/

[59] Paniagua-Michel, J. and Garcia, O., (2003). Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquacultural Engineering, 28(3-4):131-139. http://dx.doi.org/10.1016/S0144-8609(03)00011-6

[60] Ni, M., Yuan, J., Zhang, L., Hua, J., Rong, H., and Gu, Z., (2021). In-situ and ex-situ purification effect of ecological ponds of Euryale ferox Salisb on shrimp aquaculture. Aquaculture, 540:736678. https://doi.org/10.1016/j.aquaculture.2021.736678

[61] Dourou, M., Dritsas, P., Baeshen, M. N., Elazzazy, A., Al-Farga, A., and Aggelis, G., (2020). High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS microbiology letters, 367(12). https://doi.org/10.1093/femsle/fnaa081

[62] De Jong, E., Higson, A., Walsh, P., and Wellisch, M., (2012). Bio-based chemicals value added products from biorefineries. IEA Bioenergy, Task42 Biorefinery, 34:1-33. https://www.academia.edu/download/72582170/Bio-Based_Chemicals_Value_Added_Products20211014-21750-1exc7nt.pdf

[63] Siddiki, S.Y.A., Mofijur, M., Kumar, P.S., Ahmed, S.F., Inayat, A., Kusumo, F., and Mahlia, T.M.I., (2022). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307:121782. https://doi.org/10.1016/j.fuel.2021.121782

[64] Leong, H.Y., Chang, C.K., Khoo, K.S., Chew, K.W., Chia, S.R., Lim, J.W., and Show, P.L., (2021). Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 14(1):1-15. https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-021-01939-5

[65] Kashem, A.H.M., Das, P., AbdulQuadir, M., Khan, S., Thaher, M.I., Alghasal, G., and Al-Jabri, H., (2023). Microalgal bioremediation of brackish aquaculture wastewater. Science of The Total Environment, 873:162384. https://doi.org/10.1016/j.scitotenv.2023.162384

[66] Marinho-Soriano, E., Azevedo, C.A.A., Trigueiro, T.G., Pereira, D.C., Carneiro, M.A.A., and Camara, M.R., (2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International Biodeterioration & Biodegradation, 65(1):253-257. https://doi.org/10.1016/j.ibiod.2010.10.001

[67] Muthukrishnan, S., Sabaratnam, V., Tan, G.Y.A., and Chong, V.C., (2015). Identification of indigenous bacteria isolated from shrimp aquaculture wastewater with bioremediation application: total ammoniacal nitrogen (TAN) and nitrite removal. Sains Malaysiana, 44(8):1103-1110. http://www.ukm.my/jsm/pdf_files/SM-PDF-44-8-2015/04%20Sarmila.pdf

[68] Geng, B., Li, Y., Liu, X., Ye, J., and Guo, W., (2022). Effective treatment of aquaculture wastewater with mussel/microalgae/bacteria complex ecosystem: a pilot study. Scientific Reports, 12(1):2263. https://doi.org/10.1038%2Fs41598-021-04499-8

[69] John, E.M., Krishnapriya, K., and Sankar, T.V., (2020). Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526:735390. https://doi.org/10.1016/j.aquaculture.2020.735390

[70] Campos, C.V.F.D.S., Oliveira, C.Y.B., dos Santos, E.P., De Abreu, J.L., Severi, W., da Silva, S.M.B.C., and Gálvez, A.O., (2022). Chlorella-Daphnia consortium as a promising tool for bioremediation of Nile tilapia farming wastewater. Chemistry and Ecology, 38(9):873-895. https://doi.org/10.1080/02757540.2022.2120612

[71] Sonia, V., Rajagopalsamy, C.B.T., Ahilan, B., and Francis, T., (2015). Influence of bioremediation on the growth and survival of Cyprinus carpio Var Koi using aquaculture wastewater. I Control Pollution, 31(2):243-248. https://www.researchgate.net/publication/299511820. Influence_of_bioremediation_on_the_growth_and_survival_of_cyprinus_carpio_var_koi_using_aquaculture_waste_water

[72] Li, M., Callier, M.D., Blancheton, J.P., Galès, A., Nahon, S., Triplet, S., and Roque D'Orbcastel, E., (2019). Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture, 504:314-325. https://dx.doi.org/10.1016/j.aquaculture.2019.02.013

[73] Buck, B.H., Troell, M.F., Krause, G., Angel, D.L., Grote, B., and Chopin, T., (2018). State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Frontiers in Marine Science, 5:165. https://doi.org/10.3389/fmars.2018.00165